Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835566

RESUMO

In this paper we present a systematic approach to sort out different types of random telegraph noises (RTN) in CMOS image sensors (CIS) by examining their dependencies on the transfer gate off-voltage, the reset gate off-voltage, the photodiode integration time, and the sense node charge retention time. Besides the well-known source follower RTN, we have identified the RTN caused by varying photodiode dark current, transfer-gate and reset-gate induced sense node leakage. These four types of RTN and the dark signal shot noises dominate the noise distribution tails of CIS and non-CIS chips under test, either with or without X-ray irradiation. The effect of correlated multiple sampling (CMS) on noise reduction is studied and a theoretical model is developed to account for the measurement results.

2.
Sensors (Basel) ; 17(12)2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29206162

RESUMO

A submicron pixel's light and dark performance were studied by experiment and simulation. An advanced node technology incorporated with a stacked CMOS image sensor (CIS) is promising in that it may enhance performance. In this work, we demonstrated a low dark current of 3.2 e-/s at 60 °C, an ultra-low read noise of 0.90 e-·rms, a high full well capacity (FWC) of 4100 e-, and blooming of 0.5% in 0.9 µm pixels with a pixel supply voltage of 2.8 V. In addition, the simulation study result of 0.8 µm pixels is discussed.

3.
Sensors (Basel) ; 17(12)2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29168778

RESUMO

A study of the random telegraph noise (RTN) of a 1.1 µm pitch, 8.3 Mpixel CMOS image sensor (CIS) fabricated in a 45 nm backside-illumination (BSI) technology is presented in this paper. A noise decomposition scheme is used to pinpoint the noise source. The long tail of the random noise (RN) distribution is directly linked to the RTN from the pixel source follower (SF). The full 8.3 Mpixels are classified into four categories according to the observed RTN histogram peaks. A theoretical formula describing the RTN as a function of the time difference between the two phases of the correlated double sampling (CDS) is derived and validated by measured data. An on-chip time constant extraction method is developed and applied to the RTN analysis. The effects of readout circuit bandwidth on the settling ratios of the RTN histograms are investigated and successfully accounted for in a simulation using a RTN behavior model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...