Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genesis ; 50(7): 517-24, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22266914

RESUMO

Basonuclin (BNC1) is a zinc finger protein expressed primarily in gametogenic cells and proliferative keratinocytes. Our previous work suggested that BNC1 is present in spermatogonia, spermatocytes, and spermatids, but absent in the Sertoli cells. BNC1's role in spermatogenesis is unknown. Here, we show that BNC1 is required for the maintenance of spermatogenesis. Bnc1-null male mice were sub-fertile, losing germ cells progressively with age. The Bnc1-null seminiferous epithelia began to degenerate before 8 weeks of age and eventually became Sertoli cell-only. Sperm count and motility also declined with age. Furthermore, Bnc1 heterozygotes, although fertile, showed a significant drop in sperm count and in testis weight by 24 weeks of age, suggesting a dosage effect of Bnc1 on testis development. In conclusion, our data demonstrate for the first time BNC1's essential role in maintaining mouse spermatogenesis.


Assuntos
Proteínas de Ligação a DNA/genética , Epitélio Seminífero/metabolismo , Túbulos Seminíferos/fisiologia , Espermatogênese/fisiologia , Fatores de Transcrição/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Fertilidade/fisiologia , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Heterozigoto , Homozigoto , Masculino , Camundongos , Camundongos Knockout , Tamanho do Órgão , Epitélio Seminífero/citologia , Células de Sertoli/fisiologia , Contagem de Espermatozoides , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Fatores de Transcrição/metabolismo
2.
Cell ; 145(6): 941-955, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21663796

RESUMO

Melanocyte stem cells (McSCs) intimately interact with epithelial stem cells (EpSCs) in the hair follicle bulge and secondary hair germ (sHG). Together, they undergo activation and differentiation to regenerate pigmented hair. However, the mechanisms behind this coordinated stem cell behavior have not been elucidated. Here, we identified Wnt signaling as a key pathway that couples the behavior of the two stem cells. EpSCs and McSCs coordinately activate Wnt signaling at the onset of hair follicle regeneration within the sHG. Using genetic mouse models that specifically target either EpSCs or McSCs, we show that Wnt activation in McSCs drives their differentiation into pigment-producing melanocytes, while EpSC Wnt signaling not only dictates hair follicle formation but also regulates McSC proliferation during hair regeneration. Our data define a role for Wnt signaling in the regulation of McSCs and also illustrate a mechanism for regeneration of complex organs through collaboration between heterotypic stem cell populations.


Assuntos
Células Epiteliais/citologia , Cabelo/fisiologia , Melanócitos/citologia , Pigmentação , Fenômenos Fisiológicos da Pele , Células-Tronco/citologia , Proteínas Wnt/metabolismo , Animais , Diferenciação Celular , Cabelo/citologia , Doenças do Cabelo/metabolismo , Doenças do Cabelo/patologia , Folículo Piloso/citologia , Humanos , Camundongos , Regeneração , Transdução de Sinais , Pele/citologia , beta Catenina/metabolismo
3.
PLoS One ; 3(3): e1843, 2008 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-18365001

RESUMO

Previous cytogenetic studies suggest that various rDNA chromosomal loci are not equally active in different cell types. Consistent with this variability, rDNA polymorphism is well documented in human and mouse. However, attempts to identify molecularly rDNA variant types, which are regulated individually (i.e., independent of other rDNA variants) and tissue-specifically, have not been successful. We report here the molecular cloning and characterization of seven mouse rDNA variants (v-rDNA). The identification of these v-rDNAs was based on restriction fragment length polymorphisms (RFLPs), which are conserved among individuals and mouse strains. The total copy number of the identified variants is less than 100 and the copy number of each individual variant ranges from 4 to 15. Sequence analysis of the cloned v-rDNA identified variant-specific single nucleotide polymorphisms (SNPs) in the transcribed region. These SNPs were used to develop a set of variant-specific PCR assays, which permitted analysis of the v-rDNAs' expression profiles in various tissues. These profiles show that three v-rDNAs are expressed in all tissues (constitutively active), two are expressed in some tissues (selectively active), and two are not expressed (silent). These expression profiles were observed in six individuals from three mouse strains, suggesting the pattern is not randomly determined. Thus, the mouse rDNA array likely consists of genetically distinct variants, and some are regulated tissue-specifically. Our results provide the first molecular evidence for cell-type-specific regulation of a subset of rDNA.


Assuntos
RNA Ribossômico/genética , Animais , Clonagem Molecular , DNA Ribossômico/genética , Epigênese Genética , Camundongos , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...