Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 11(17): 8102-8109, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30982841

RESUMO

The proof-of-concept strategy in this study based on biodegradable and biocompatible self-assembling fluorescent virus-like particle/RNAi nanocomplexes (VLP/RNAi) produced in Escherichia coli (E. coli) followed by surface modification with a cell-penetrating peptide (CPP) and an apolipoprotein E peptide (ApoEP) (dP@VLP/RNAi), which can cross the blood-brain barrier (BBB) to inhibit the DNA repair mechanism and act synergistically with temozolomide (TMZ) for promoting clinical chemotherapy has achieved good therapeutic effects towards malignant brain tumors. The synergistic value of this study's design was verified in intracranial mouse models of glioblastomas (GBMs). Intravenous administration of this formulation enhanced the curative efficacy of TMZ by downregulating the hepatocyte growth factor receptor (c-MET) gene in GBM U87 cells. Furthermore, upon gene-chemotherapy, the methylated DNA in GBM U87 cells was significantly enhanced by inhibiting the DNA repair mechanism, leading to significant brain tumor suppression. The results of this study could be critical for the design of RNAi-based genetic therapeutics for promoting chemotherapy against brain tumors.


Assuntos
Portadores de Fármacos/química , Nanoestruturas/química , RNA Interferente Pequeno/química , Animais , Apolipoproteínas E/química , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Reparo do DNA , Sinergismo Farmacológico , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Estimativa de Kaplan-Meier , Camundongos , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , RNA Interferente Pequeno/uso terapêutico , Temozolomida/química , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Transplante Heterólogo
2.
Phytomedicine ; 22(3): 406-14, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25837279

RESUMO

Herbal medicine is a popular complementary or alternative treatment for prostate cancer. Wedelia chinensis has at least three active compounds, wedelolactone, luteolin, and apigenin synergistically inhibiting prostate cancer cell growth in vitro. Here, we report a systematic study to develop a standardized and effect-optimized herbal extract, designated as W. chinensis extract (WCE) to facilitate its future scientific validation and clinical use. Ethanolic extract of dried W. chinensis plant was further condensed, acid hydrolyzed, and enriched with preparative chromatography. The chemical compositions of multiple batches of the standardized preparation WCE were quantified by LC/MS/MS, and biological activities were analyzed by in vitro and in vivo assays. Furthermore, the pharmacokinetics of the holistic WCE were compared with the combination of the equivalent principal active compounds through oral administration. The results indicated that quantitative chemical assay and PSA (prostate-specific antigen)-reporter assay together are suitable to measure the quality and efficacy of a standardized Wedelia extract on a xenograft tumor model. The presence of minor concomitant compounds in WCE prolonged the systemic exposure to the active compounds, thus augmented the anti-tumor efficacy of WCE. In conclusion, a combination of LC/MS/MS and PSA reporter assay is suitable to qualify a standardized preparation of WCE. Furthermore, the pharmacokinetics and oral bioavailability of active compounds demonstrate that holistic WCE exerted additional pharmacological synergy beyond the multi-targeted therapeutic effects caused by more than one active compound. WCE merits a higher priority to be studied for use in prostate cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/normas , Fitoterapia/normas , Extratos Vegetais/normas , Neoplasias da Próstata/tratamento farmacológico , Wedelia/química , Animais , Antineoplásicos Fitogênicos/farmacocinética , Linhagem Celular Tumoral , Cromatografia Líquida , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Extratos Vegetais/farmacocinética , Controle de Qualidade , Espectrometria de Massas em Tandem , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Biol Chem ; 289(42): 29334-49, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25183012

RESUMO

Iron was previously shown to induce rapid nuclear translocation of a Myb3 transcription factor in the protozoan parasite, Trichomonas vaginalis. In the present study, iron was found to induce a transient increase in cellular cAMP, followed by the nuclear influx of Myb3, whereas the latter was also induced by 8-bromo-cyclic AMP. Iron-inducible cAMP production and nuclear influx of Myb3 were inhibited by suramin and SQ22536, respective inhibitors of the Gα subunit of heterotrimeric G proteins and adenylyl cyclases. In contrast, the nuclear influx of Myb3 induced by iron or 8-bromo-cAMP was delayed or inhibited, respectively, by H89, the inhibitor of protein kinase A. Using liquid chromatography-coupled tandem mass spectrometry, Thr(156) and Lys(143) in Myb3 were found to be phosphorylated and ubiquitinated, respectively. These modifications were induced by iron and inhibited by H89, as shown by immunoprecipitation-coupled Western blotting. Iron-inducible ubiquitination and nuclear influx were aborted in T156A and K143R, but T156D was constitutively ubiquitinated and persistently localized to the nucleus. Myb3 was phosphorylated in vitro by the catalytic subunit of a T. vaginalis protein kinase A, TvPKAc. A transient interaction between TvPKAc and Myb3 and the phosphorylation of both proteins were induced in the parasite shortly after iron or 8-bromo-cAMP treatment. Together, these observations suggest that iron may induce production of cAMP and activation of TvPKAc, which then induces the phosphorylation of Myb3 and subsequent ubiquitination for accelerated nuclear influx. It is conceivable that iron probably exerts a much broader impact on the physiology of the parasite than previously thought to encounter environmental changes.


Assuntos
Núcleo Celular/metabolismo , Ferro/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Trichomonas vaginalis/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Lisina/metabolismo , Dados de Sequência Molecular , Oligonucleotídeos/genética , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Ubiquitina/metabolismo
4.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 572-81, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531491

RESUMO

Papain-like protease (PLpro) is one of two cysteine proteases involved in the proteolytic processing of the polyproteins of Severe acute respiratory syndrome coronavirus (SARS-CoV). PLpro also shows significant in vitro deubiquitinating and de-ISGylating activities, although the detailed mechanism is still unclear. Here, the crystal structure of SARS-CoV PLpro C112S mutant in complex with ubiquitin (Ub) is reported at 1.4 Šresolution. The Ub core makes mostly hydrophilic interactions with PLpro, while the Leu-Arg-Gly-Gly C-terminus of Ub is located in the catalytic cleft of PLpro, mimicking the P4-P1 residues and providing the first atomic insights into its catalysis. One of the O atoms of the C-terminal Gly residue of Ub is located in the oxyanion hole consisting of the main-chain amides of residues 112 and 113. Mutations of residues in the PLpro-Ub interface lead to reduced catalytic activity, confirming their importance for Ub binding and/or catalysis. The structure also revealed an N-cyclohexyl-2-aminethanesulfonic acid molecule near the catalytic triad, and kinetic studies suggest that this binding site is also used by other PLpro inhibitors. Overall, the structure provides a foundation for understanding the molecular basis of coronaviral PLpro catalysis.


Assuntos
Papaína/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Ubiquitina/química , Proteínas Virais/química , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Papaína/genética , Papaína/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteólise , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Taurina/análogos & derivados , Taurina/química , Taurina/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
Arch Biochem Biophys ; 520(2): 74-80, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22391227

RESUMO

Papain-like protease (PLpro) from severe acute respiratory syndrome (SARS) coronavirus is one of the two proteases involved in the proteolytic processing of the virion polyproteins. In addition, PLpro shows significant in vitro deubiquitinating and de-ISGylating activities. All these findings demonstrated the multifunctional nature of the PLpro. Here we report the sensitivity of PLpro to denaturant urea. An increase in urea concentration induced a reversible biphasic unfolding of the enzyme. Differently, the unfolding of the catalytic triad region located within the palm and thumb domains followed a monophasic unfolding curve. Further observations suggest that the zinc-binding domain may start to unfold during the first transition. An 80% lost of its enzymatic activity at a urea concentration lower than 1M showed a close correlation with unfolding of the zinc-binding domain. The enzyme was also characterized in terms of hydrophobicity and size-and-shape distribution. We have demonstrated that PLpro displayed differential domain structure stability and molten globule state in its folding. These studies will not only assist in our understanding of the folding of this viral enzyme, but also that of other deubiquitinating enzymes with a similar scaffold.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/ultraestrutura , Modelos Químicos , Modelos Moleculares , Ureia/química , Proteínas Virais/química , Proteínas Virais/ultraestrutura , Sequência de Aminoácidos , Proteases 3C de Coronavírus , Ativação Enzimática , Estabilidade Enzimática , Dados de Sequência Molecular , Conformação Proteica , Desnaturação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...