Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(3): 101658, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101449

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely affected human lives around the world as well as the global economy. Therefore, effective treatments against COVID-19 are urgently needed. Here, we screened a library containing Food and Drug Administration (FDA)-approved compounds to identify drugs that could target the SARS-CoV-2 main protease (Mpro), which is indispensable for viral protein maturation and regard as an important therapeutic target. We identified antimalarial drug tafenoquine (TFQ), which is approved for radical cure of Plasmodium vivax and malaria prophylaxis, as a top candidate to inhibit Mpro protease activity. The crystal structure of SARS-CoV-2 Mpro in complex with TFQ revealed that TFQ noncovalently bound to and reshaped the substrate-binding pocket of Mpro by altering the loop region (residues 139-144) near the catalytic Cys145, which could block the catalysis of its peptide substrates. We also found that TFQ inhibited human transmembrane protease serine 2 (TMPRSS2). Furthermore, one TFQ derivative, compound 7, showed a better therapeutic index than TFQ on TMPRSS2 and may therefore inhibit the infectibility of SARS-CoV-2, including that of several mutant variants. These results suggest new potential strategies to block infection of SARS-CoV-2 and rising variants.


Assuntos
Aminoquinolinas , Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , SARS-CoV-2 , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Pandemias , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Internalização do Vírus/efeitos dos fármacos
2.
Am J Cancer Res ; 10(8): 2535-2545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32905393

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or 2019 novel coronavirus (2019-nCoV), took tens of thousands of lives and caused tremendous economic losses. The main protease (Mpro) of SARS-CoV-2 is a potential target for treatment of COVID-19 due to its critical role in maturation of viral proteins and subsequent viral replication. Conceptually and technically, targeting therapy against Mpro is similar to target therapy to treat cancer. Previous studies show that GC376, a broad-spectrum dipeptidyl Mpro inhibitor, efficiently blocks the proliferation of many animal and human coronaviruses including SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), porcine epidemic diarrhea virus (PEDV), and feline infectious peritonitis virus (FIPV). Due to the conservation of structure and catalytic mechanism of coronavirus main protease, repurposition of GC376 against SARS-CoV-2 may be an effective way for the treatment of COVID-19 in humans. To validate this conjecture, the binding affinity and IC50 value of Mpro with GC376 was determined by isothermal titration calorimetry (ITC) and fluorescence resonance energy transfer (FRET) assay, respectively. The results showed that GC376 binds to SARS-CoV-2 Mpro tightly (KD = 1.6 µM) and efficiently inhibit its proteolytic activity (IC50 = 0.89 µM). We also elucidate the high-resolution structure of dimeric SARS-CoV-2 Mpro in complex with GC376. The cocrystal structure showed that GC376 and the catalytic Cys145 of Mpro covalently linked through forming a hemithioacetal group and releasing a sulfonic acid group. Because GC376 is already known as a broad-spectrum antiviral medication and successfully used in animal, it will be a suitable candidate for anti-COVID-19 treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...