Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Biol ; 23(4): 100822, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979494

RESUMO

Heme oxygenase 1 (Hmox1), the inducible form of heme degrading enzymes Hmoxs, is important for establishment and maintenance of pregnancy. A growing body of evidence suggests an association between Hmox1 and angiogenesis, including placental angiogenesis. In this study, we examined the expression of two angiogenic factors in the placentas of Hmox1 deficient mouse embryos, whose expression was found to be related to that of Hmox1. Relative protein levels and localization of Hmoxs and two angiogenic factors [Vegf and Prolactin along with their receptors, and Cd31/Pecam1] were compared in the placentas of Hmox1 wildtype and knockout mouse embryos using western blotting and immunohistochemistry along with histological analysis. The results revealed tissue disorganisation, reduced area of labyrinth and smaller nuclear size of trophoblast giant cell in the placentas of knockout embryos. The levels of Hmox2, prolactin, and Cd31/Pecam1 were found to be altered in knockout placentas, whereas Vegf and its receptors seem to be unaltered in our samples. Overall, our findings imply that Hmox2 is unlikely to compensate for Hmox1 deficiency in knockout placentas, and altered levels of prolactin and Cd31/Pecam1 hint towards impaired angiogenesis in these placentas. Further investigation would be needed to understand the molecular mechanism of defective angiogenesis in the placentas of Hmox1 knockout mouse embryos.


Assuntos
Heme Oxigenase-1 , Placenta , Animais , Feminino , Camundongos , Gravidez , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Camundongos Knockout , Placenta/metabolismo , Prolactina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Acta Parasitol ; 68(4): 723-734, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37594685

RESUMO

BACKGROUND: An association between Schistosoma japonicum and colorectal cancer in humans has been known since a long time; however, this association remains understudied and lacks comprehensive experimentation support. OBJECTIVE: Various epidemiological and pathological studies have established the role of chronic inflammation as a major factor behind the induction of colorectal cancer. The aim of this review is to present the current knowledge on the association of Schistosoma japonicum with colorectal cancer. RESULT: Mechanisms which lead to induction and progression of colorectal cancer are highlighted along with diagnosis and treatment for the same. Further, various methodologies, including mass drug administration, use of new drugs and vaccines, role of apoptosis, and histone-modifying enzymes, have been described which can either prevent the schistosomal infection itself or can check it from reaching an advanced stage. CONCLUSIONS: Epidemiological, clinical, pathological and surgical studies suggest that Schistosoma japonicum is responsible for induction of colorectal cancer. However, thorough clinical studies are required to support and globally accept this notion. Further, methodologies highlighted in this work can be employed in order to take care of schistosomal infection or address the cancer induction and progression.


Assuntos
Neoplasias Colorretais , Schistosoma japonicum , Animais , Humanos , Inflamação , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/patologia
3.
J Histochem Cytochem ; 71(8): 431-450, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37480265

RESUMO

Heme oxygenases (Hmoxs) are enzymes that catalyze the first and rate-limiting step in the degradation of heme to carbon monoxide, iron, and biliverdin. The two main isozymes, namely Hmox1 and Hmox2, are encoded by two different genes. Mutation of the Hmox1 gene in mice is known to cause extensive prenatal lethality, and limited information is available about the expression of Hmox proteins in developing mouse embryos. In this study, immunohistochemistry was used to perform a detailed investigation comparing Hmox proteins in Hmox1 wild-type and knockout (KO) mouse embryos collected from wild-type and heterozygous timed-matings. Western analysis for Hmoxs was also done in the organs of late-gestation embryos. The results demonstrated cytoplasmic and nuclear localization of Hmoxs in all the organs examined in wild-type embryos. Interestingly, Hmox2 immunoreactive protein signals were significantly low in most of the organs of mid- and late-gestation Hmox1-KO embryos. Furthermore, relative levels of Hmox2 were revealed to be significantly lower in the lung and kidney of late-gestation Hmox1-KO embryos by western analysis, which complemented the immunohistochemistry findings in these two organs. The current study provides detailed immunoexpression patterns of Hmox proteins in wild-type and Hmox1-KO mouse embryos in mid- and late-gestation.


Assuntos
Heme Oxigenase (Desciclizante) , Heme Oxigenase-1 , Animais , Feminino , Camundongos , Gravidez , Heme/metabolismo , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/genética , Ferro , Embrião de Mamíferos
5.
Birth Defects Res ; 115(2): 179-187, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36086893

RESUMO

Heme oxygenase 1 or Hmox1 enzyme is involved in catalyzing the first and rate-limiting step in heme breakdown reactions. Many studies have reported a partial lethality of Hmox1 knockout mice obtained from heterozygous breeding pairs. Similar results were obtained in our transgenic mice colony and a sex specific bias was observed in the favor of males in the adult mice. Hmox1 independent factors which could have caused this bias were initially analyzed and it was found that those factors were not a reason behind this anomaly. Certain studies involving gene knockout hinted toward a prenatal or neonatal lethality of female knockout mice embryos or pups, respectively. In order to check if this bias was occurring in embryonic stages, that is, either if mutant female embryos were dying or if heterozygous mothers were not carrying embryos to term, we analyzed the sex-ratios in mid- and late-gestational ages (9.5-13.5 dpc and 14.5-18.5 dpc, respectively). Our results did not indicate any significant difference in the sex ratios in embryonic stages; hence, it was concluded that females are not dying in embryonic stages. It can be speculated that these deaths were probably occurring at neonatal age. More studies are required to confirm that the lack of Hmox1 gene products is the sole reason for this female lethality.


Assuntos
Genes Letais , Heme Oxigenase-1 , Razão de Masculinidade , Animais , Feminino , Masculino , Camundongos , Gravidez , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Camundongos Knockout
6.
Hormones (Athens) ; 21(2): 209-219, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35545690

RESUMO

Prolactin, a pituitary hormone that was discovered about 80 years ago and is primarily known for its functions in mammary gland development and lactation, is now known to participate in numerous functions across different phylogenetic groups. Fundamentally known for its secretion from lactotroph cells in adenohypophysis region of pituitary gland, newer studies have demonstrated a number of extrapituitary sites which secrete prolactin, where it acts in an autocrine, paracrine, and endocrine manner to regulate essential physiological and biochemical processes. These sites include lymphocytes, epithelial cells of lactating mammary glands, breast cancer cells of epithelial origin, and the placenta. The placenta is one of the most important organs secreting prolactin; however, its role in placental biology has not to date been reviewed comprehensively. This review elaborates upon the various facets of prolactin hormone, including prolactin production and its post-translational modifications and signaling. Major emphasis is placed on placental prolactin and its potential roles, ranging from the role of prolactin in angiogenesis, preeclampsia, maternal diabetes, and anti-apoptosis, among others.


Assuntos
Placenta , Prolactina , Feminino , Humanos , Lactação , Hipófise/metabolismo , Hipófise/fisiologia , Placenta/metabolismo , Placenta/fisiologia , Gravidez/metabolismo , Gravidez/fisiologia , Prolactina/metabolismo , Prolactina/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...