Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37947733

RESUMO

I-III-VI2 group quantum dots (QDs) have attracted high attention in photoelectronic conversion applications, especially for QD-sensitized solar cells (QDSSCs). This group of QDs has become the mainstream light-harvesting material in QDSSCs due to the ability to tune their electronic properties through size, shape, and composition and the ability to assemble the nanocrystals on the surface of TiO2. Moreover, these nanocrystals can be produced relatively easily via cost-effective solution-based synthetic methods and are composed of low-toxicity elements, which favors their integration into the market. This review describes the methods developed to prepare I-III-VI2 QDs (AgInS2 and CuInS2 were excluded) and control their optoelectronic properties to favor their integration into QDSSCs. Strategies developed to broaden the optoelectronic response and decrease the surface-defect states of QDs in order to promote the fast electron injection from QDs into TiO2 and achieve highly efficient QDSSCs will be described. Results show that heterostructures obtained after the sensitization of TiO2 with I-III-VI2 QDs could outperform those of other QDSSCs. The highest power-conversion efficiency (15.2%) was obtained for quinary Cu-In-Zn-Se-S QDs, along with a short-circuit density (JSC) of 26.30 mA·cm-2, an open-circuit voltage (VOC) of 802 mV and a fill factor (FF) of 71%.

2.
Nanotechnology ; 31(46): 465704, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-32853176

RESUMO

In this work, novel heterostructured photocatalysts associating graphitic carbon nitride (g-CN) and SmFeO3 were prepared via a mixing-ultrasonication process. Structural, optical and morphological characterizations demonstrate that the interfacial junction between g-CN and SmFeO3 is well established for all g-CN/SmFeO3 composites prepared with g-CN:SmFeO3 weight ratio of 20:80, 50:50 and 80:20. The g-CN/SmFeO3 (80:20) composite exhibits the highest photocatalytic activity for the degradation of pollutants like the Orange II dye and the tetracycline hydrochloride antibiotic under visible light irradiation. This high photocatalytic activity originates from the enhanced light absorption over the whole visible region compared to pure g-CN and from the improved separation and transfer of photogenerated electron/hole pairs as demonstrated by photoluminescence and photocurrent measurements. A Z-scheme charge carrier transfer mechanism was demonstrated for the photocatalytic reactions. The g-CN/SmFeO3 (80:20) catalyst was also demonstrated to be stable and can be reused up to six times without significant alteration of the activity.

3.
Nanomaterials (Basel) ; 10(7)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708780

RESUMO

Photocatalysts composed of graphitic carbon nitride (g-CN) and TiO2 were efficiently prepared by thermolysis of the MIL-125(Ti) metal organic framework deposited on g-CN. The heterojunction between the 12 nm-sized TiO2 nanoparticles and g-CN was well established and the highest photocatalytic activity was observed for the g-CN/TiO2 (3:1) material. The g-CN/TiO2 (3:1) composite exhibits high visible light performances both for the degradation of pollutants like the Orange II dye or tetracycline but also for the production of hydrogen (hydrogen evolution rate (HER) up to 1330 µmolh-1g-1 and apparent quantum yield of 0.22% using NiS as a cocatalyst). The improved visible light performances originate from the high specific surface area of the photocatalyst (86 m2g-1) and from the efficient charge carriers separation as demonstrated by photoluminescence, photocurrent measurements, and electrochemical impedance spectroscopy. The synthetic process developed in this work is based on the thermal decomposition of metal organic framework deposited on a graphitic material and holds huge promise for the preparation of porous heterostructured photocatalysts.

4.
J Colloid Interface Sci ; 534: 637-648, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30268080

RESUMO

The deposition of oxygen-defective ZnO films exhibiting varied nanostructures via Solution Precursor Plasma Spray (SPPS) route, a one-step, minute-scaled duration and large scale method, is reported. The in situ formation of oxygen vacancies in ZnO films was confirmed by UV-Visible, Raman and photoluminescence (PL) spectroscopy and the as-prepared samples exhibit a bandgap as low as 3.02 eV. Density functional theory (DFT) simulation demonstrates that the polarization of ZnO is enhanced by the created oxygen vacancies, leading to substantially improved photocatalytic activity. The comparative experiments also revealed that forming and preserving appropriate ZnO precursor clusters inside the plasma plume is requisite for obtaining propitious ZnO nanostructures, which was followed by the in situ transfer and growth of the clusters on the preheated substrate. The ZnO-NRs films fully degrade the aqueous Orange II dye solutions within 120 min and maintain a quasi-intact activity (95.8% retention) after five test runs, which highlight their good stability. The oxygen vacancies and the narrowing of the bandgap also enable a visible light-driven photodegradation activity with conversions as high as 54.1%. In summary, this work not only reveals that the photocatalytic activity of SPPS-deposited ZnO films benefit from oxygen vacancies and well nanostructures, but also suggests that the SPPS route is of high potential for preparing metal oxides films destined to functional applications.

5.
Nanotechnology ; 30(4): 045707, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30479317

RESUMO

Binary spinel-type metal oxides (AB2O4) related materials, including ferrites (AFe2O4), are attractive photocatalysts thanks to their excellent visible light response for the photodegradation of organic pollutants. Currently, these materials are synthesized via conventional chemical routes suffering from long preparation duration and multistep. Moreover, the photocatalysts are obtained as nano-powders from conventional chemical routes would introduce another drawback for their recycling and reuse. From an industrial perspective, it is desirable to develop an efficient and facile synthesis process to produce photocatalysts in a non-dispersible form. Herein, we demonstrate that the solution precursor plasma spray (SPPS) process is a single-step method for depositing photocatalytically active zinc ferrite-based films within several minutes. The influence of the precursor ratio on the microstructures and phase compositions of the ZnFe2O4 films was investigated by XRD and Raman analyses. In addition, two optimized ZnFe2O4 films were prepared by increasing the ZnO loading and tailoring injection pattern of the precursor solution. The surface morphologies and optical bandgap were also determined by SEM and UV-visible spectroscopy. The photocatalytic activities of the ZnFe2O4 films were evaluated through the degradation of the Orange II dye and of tetracycline hydrochloride under UV or visible light irradiation. The results show that compositional ratios and composition distribution of the ZnFe2O4 films prepared via SPPS played a key role on the photocatalytic activity. The SPPS route was demonstrated to be a promising method for the synthesis and the deposition of metal oxide (i.e. perovskite type and spinel type) films within a single-step for functional applications.

6.
Beilstein J Nanotechnol ; 7: 1338-1349, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826508

RESUMO

Ce-doped ZnO (ZnO:Ce) nanorods have been prepared through a solvothermal method and the effects of Ce-doping on the structural, optical and electronic properties of ZnO rods were studied. ZnO:Ce rods were characterized by XRD, SEM, TEM, XPS, BET, DRS and Raman spectroscopy. 5% Ce-doped ZnO rods with an average length of 130 nm and a diameter of 23 nm exhibit the highest photocatalytic activity for the degradation of the Orange II dye under solar light irradiation. The high photocatalytic activity is ascribed to the substantially enhanced light absorption in the visible region, to the high surface area of ZnO:Ce rods and to the effective electron-hole pair separation originating from Ce doping. The influence of various experimental parameters like the pH, the presence of salts and of organic compounds was investigated and no marked detrimental effect on the photocatalytic activity was observed. Finally, recyclability experiments demonstrate that ZnO:Ce rods are a stable solar-light photocatalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...