Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Afr J Tradit Complement Altern Med ; 14(1): 278-287, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28480406

RESUMO

BACKGROUND: High plasma concentration of low-density lipoprotein cholesterol (LDL-c) plays a significant role in the incidence of atherosclerosis and coronary heart diseases (CHD). MATERIALS AND METHODS: The purpose of this study was to investigate the mechanism by which citrus flavonoids, naringenin regulate the LDL receptor (LDLr) gene in human liver using the human hepatoma cell line, HepG2 as a model. RESULTS: Time-course transient transfection of HepG2 cells with luciferase reporter-gene constructs incorporating the promoters of SREBP-1a,-1c, -2 and LDLr, revealed that in lipoprotein-deficient medium (LPDM), only SREBP-1a promoter activity was increased significantly after 4h exposure to 200µM naringenin respectively. However, after 24h incubation with 200µM naringenin the gene expression activities of all the SREBP-1a, -1c, -2 and LDLr promoter-constructs were increased significantly. The effects of both 200µM naringenin on elevating LDLr mRNA are possibly due to regulation of gene transcription by SREBP-la and SREBP-2. However, the suppression effect of 200µM naringenin on hepatic SREBP-1c mRNA expression is likely associated with the reduction in mRNA expression of both acetyl-CoA carboxylase and fatty acid synthase in human hepatoma HepG2 cells. It was found that, 200µM naringenin was likely to stimulate LDLr gene expression via increase phosphorylation of PI3K and ERK1/2 which enhance the transcription factors SREBP-1a and SREBP-2 mRNA levels and increased their protein maturation in human hepatoma HepG2 cell. CONCLUSION: Diets supplemented with naringenin could effectively reduce mortality and morbidity from coronary heart diseases and as cardio-protective effects in humans.


Assuntos
Carcinoma Hepatocelular/genética , Flavanonas/farmacologia , Neoplasias Hepáticas/genética , Receptores de LDL/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de LDL/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA