Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(18): 9751-9760, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38642056

RESUMO

The potential for sustainable energy and carbon neutrality has expanded with the development of a highly active electrocatalyst for the oxygen evolution reaction (OER). Covalent Organic Frameworks (COF) have recently garnered attention because of their enormous potential in a number of cutting-edge application sectors, such as gas storage, sensors, fuel cells, and active catalytic supports. A simple and effective COF constructed and integrated by post-alteration plasma modification facilitates high electrocatalytic OER activity under alkaline conditions. Variations in parameters such as voltage and treatment duration have been employed to enhance the factor that demonstrates high OER performance. The overpotential and Tafel slope are the lowest of all when using an optimized parameter, such as plasma treatment for 30 min utilizing 6 kV of voltage, PT-30 COF, measuring 390 mV at a current density of 10 mA.cm-2 and 69 mV.dec-1, respectively, as compared to 652 mV and 235 mV.dec-1 for the Pristine-COF. Our findings provide a method for broadening the scope by post-functionalizing the parent framework for effective water splitting.

2.
Langmuir ; 38(24): 7628-7638, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35666639

RESUMO

Adsorption-mediated water treatment leaves adsorbents as secondary pollutants in the environment. However, photocatalysis aids in decomposing the contaminant into its nontoxic forms. In this context, we demonstrate an adsorption-photocatalysis pairing in Au-CeO2 nanocomposites for a total methylene blue (MB) removal from water. We synthesized Au-CeO2 through the citrate (cit) reduction method at different Au loading and studied its adsorption capacity with kinetics and thermodynamic models. We observe that the high adsorption capacity of Au-CeO2 is primarily because of the presence of Ce3+ states in CeO2 and citrate ligands on Au NPs. The Ce3+ states interact and transfer their electrons to supported Au NPs, rendering a negative charge over Au. The negatively charged Au surface and the carboxyl (-COO-) group of citrate ligands mediate an electrostatic interaction/adsorption of cationic MB. The total removal of MB is expedited under white light and lasers. A control experiment with Au NPs shows less adsorption-photocatalysis. The size of Au NPs and Au-CeO2 interfacial interaction is responsible for the surface plasmon resonance spectral position at 550-600 nm. Linear sweep voltammetry (LSV) and plasmonic field simulation show surface plasmon-driven photocatalysis in Au-CeO2. LSV shows a 3-fold higher photocurrent density in Au-CeO2 than colloidal Au NPs under white light. The simulated electric field intensity in Au-CeO2 is maximum at SPR excitation and the closest interfacial separation (d = 0 nm). The plasmon-driven photocatalysis in colloidal Au NPs is mainly due to the interaction of hot electrons with the adsorbed MB molecule. Notably, near-field light concentration, hot electrons, and interfacial charge separation are responsible for excellent MB removal in the Au-CeO2 nanosystem. The total MB removal through adsorption-photocatalysis pairing is 99.3% (Au-CeO2), 30.7% (Au NPs), and 13% (CeO2).

3.
Nanoscale Adv ; 3(11): 3260-3271, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36133658

RESUMO

Defect-activated ultrathin graphitic carbon nitride nanosheets (g-C3N4) show an enhanced visible light absorption, better charge-separation, and facile charge transport properties. These are requisites for the designing of an active photocatalyst. Conventional methods used for layer exfoliation and defect activation require strong acids, reducing agents, or ultrasonic treatment for a sufficiently long duration. Furthermore, single-step approaches for layer exfoliation and defect incorporation have hardly been reported. Herein, we have shown atmospheric plasma enabled fabrication of g-C3N4 nanosheets. This approach is simple, low-cost, less time-consuming, and a green approach to exfoliate layers and activate multiple defects concurrently. The protocol involves plasma discharging at an air-water interface at 5 kV for 30-150 min. Atomic force microscopy (AFM) reveals a layer thickness of 96.27 nm in bulk g-C3N4. The thickness becomes 3.78 nm after 150 min of plasma treatment. The exfoliated layers emerge with nitrogen-vacancy sites and self-incorporated defects as probed by positron annihilation spectroscopy (PAS) and X-ray photoelectron spectroscopy (XPS). The defect activated layers show visible light absorption extended up to 600 nm. It is demonstrated that a non-uniform change in the band gap with the plasma treatment time results from quantum confinement in thin layers and Urbach tailing due to defects acting in opposition. Further, steady-state and time-resolved spectroscopy shows the contribution of multiple defect sites for a prolonged lifetime of photoinduced carriers. These defect-activated ultrathin nanosheets of CN serve as an active photocatalyst in the degradation of rhodamine B (RhB) under white LED illumination.

4.
Nanotechnology ; 28(39): 395703, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28726671

RESUMO

This work spotlights the development of a plasmonic photocatalyst showing surface plasmon induced enhanced visible light photocatalytic (PC) performance. Plasmonic Au nanoparticles (NPs) are decorated over the hybrid nanosystem of graphitic carbon nitride (GCN) and graphene quantum dots (GQD) by citrate reduction method. Surface plasmon resonance (SPR) induced enhancement of Raman G and 2D band intensity is encountered on excitation of the Plasmonic hybrid at 514.5 nm, which is near to the 532 nm absorption band of Au NPs. Time-resolved photoluminescence and XPS studies show charge transfer interaction between GQD-GCN and Au NPs. Plasmonic hybrid exhibits an enhanced PC activity over the other catalysts in the photodegradation of methylene blue (MB) under visible light illumination. Plasmonic photocatalyst displays more than 6 fold enhancement in the photodecomposition rate of MB over GQD and nearly 2 fold improvement over GCN and GQD-GCN. GQD-GCN absorbs mostly in the near visible region and can be photoexcited by visible light of wavelength ([Formula: see text]) < 460 nm. Plasmon activation in Au NPs decorated GQD-GCN could exploit the entire UV-visible light for photocatalysis. Furthermore, plasmonic Au act as antennas for accumulation and enhancement of localized electromagnetic field at the interface with GQD-GCN, and thereby promotes photogeneration of large numbers of carriers on GQD-GCN. The carriers are separated by charge transfer migration from hybrid to Au NPs. Finally, the carriers on the plasmonic Au nanostructures initiate MB degradation under visible light. Our results have shown that plasmon decoration is a suitable strategy to design a carbon based hybrid photocatalyst for solar energy conversion.

5.
J Colloid Interface Sci ; 465: 1-10, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26629648

RESUMO

Oxygen vacancies are introduced into hydrothermally processed TiO2 nanotube by vacuum calcination. Formation of oxygen vacancies modifies the local coordination in TiO2 as evident from Raman spectroscopy and secondary ion mass spectrometry (SIMS) results. The surface area is increased from 172.5m(2)/g in pure to 405.1m(2)/g in defective TiO2 nanotube. The mid-band gap electronic states created by oxygen vacancies are mostly responsible for the effective narrowing of band gap. Charge carrier separation is sufficiently prolonged as the charged oxygen defect states inhibit facile carrier recombination. With high surface area, narrowed band gap and separated charge carriers defective TiO2 nanotube is a suitable candidate in the photodegradation of methylene blue (MB) and phenol under visible light illumination. Photosensitized electron transfer from MB to the conduction band of TiO2 and the photodegradation of MB is facilitated in presence of high density of oxygen vacancies. Unlike MB, phenol absorbs in the UV region and does not easily excited under visible light. Phenol shows activity under visible light by forming charge transfer complex with TiO2. Defect trapped carriers become available at the phenol-TiO2 interface and finally interact with phenol molecule and degrade it.

6.
J Colloid Interface Sci ; 439: 54-61, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25463175

RESUMO

HYPOTHESIS: Undoped TiO2 nanoparticles are considered as a poor photocatalytic candidate in visible light due to the wide band gap. Incorporation of Gd ions is expected to modulate the electronic structure of the material and thereby enhance the photocatalytic properties of the material. EXPERIMENTS: Gadolinium doped TiO2 nanoparticles were fabricated via a simple sol-gel method. FINDINGS: The surface area of Gd doped TiO2 (225m(2)/g) nanoparticles is much higher than that of undoped TiO2 (95m(2)/g). Doping of Gadolinium enhances the visible light absorption property of TiO2 nanoparticles. Photoluminescence intensity increases at 0.03 and 0.05mol and thereafter reduces at 0.07mol. The photocatalytic efficiency of these nanoparticles is evaluated by observing degradation of phenol in aqueous solution under visible light. The doped nanoparticles are found to exhibit better photocatalytic activity. This enhancement has been attributed to the introduction of the Gd 4f energy levels in the band gap of TiO2. The presence of these states has been further confirmed by theoretical study based on density functional theory (DFT). It is speculated that the 4f states of Gd act as efficient electron trap centers. These 4f states facilitate electron migration to the surface making available free carriers to take part in photocatalysis.

7.
Photochem Photobiol ; 88(2): 257-64, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22220504

RESUMO

Cerium-doped Titanium dioxide (TiO(2)) nanoparticles are prepared by sol-gel method. Doping shifts the UV absorption edge of TiO(2) to the visible region, making it efficient for visible light photocatalysis. Incorporation of cerium decreases the effective band gap of TiO(2) and increases the Urbach energy levels. At the dopant concentrations of 0.015 and 0.025 mol the luminescence intensity increases compared to undoped TiO(2); however, the luminescence is quenched at 0.035 mol. Quenching of luminescence indicates efficient separation of charge carriers. Undoped TiO(2) is showing poor performance in the photocatalytic degradation of methyl orange under visible light. However, on cerium doping its photoactivity is increased, and is drastically enhanced at 0.035 mol of cerium. Further increase in Ce(3+) doping level to 0.045 mol results in the reduction of the photodegradation of the dye. On UV irradiation, entire samples show good photocatalytic activity up to 30 min, but their efficiency decreases when irradiation time is increased to 45 min. Irradiation for longer time results in negative charging of the TiO(2) surface with migrating electrons. The negatively charged surface repels the OH(-) ion and O(2) molecule from adsorbing on its surface thus decreasing the availability of hydroxyl and superoxide radical for dye degradation.

8.
Chemphyschem ; 12(5): 937-43, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21384487

RESUMO

The changes in the electronic and magnetic properties of graphene induced by interaction with semiconducting oxide nanoparticles such as ZnO and TiO(2) and with magnetic nanoparticles such as Fe(3)O(4), CoFe(2)O(4), and Ni are investigated by using Raman spectroscopy, magnetic measurements, and first-principles calculations. Significant electronic and magnetic interactions between the nanoparticles and graphene are found. The findings suggest that changes in magnetization as well as the Raman shifts are directly linked to charge transfer between the deposited nanoparticles and graphene. The study thus demonstrates significant effects in tailoring the electronic structure of graphene for applications in futuristic electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...