Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Big Data ; 2: 21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33693344

RESUMO

This data-driven study focuses on characterizing and predicting mobility of players between gaming servers in two popular online games, Team Fortress 2 and Counter Strike: Global Offensive. Understanding these patterns of mobility between gaming servers is important for addressing challenges related to scaling popular online platforms, such as server provisioning, traffic redirection in case of server failure, and game promotion. In this study, we build predictive models for the growth and the pace of player mobility between gaming servers. We show that the most influential factors in predicting the pace and growth of migration are related to the number of in-game interactions. Declared friendship relationships in the online social network, on the other hand, have no effect on predicting mobility patterns.

2.
Sci Rep ; 7(1): 13389, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042602

RESUMO

The time interval between two snapshots is referred to as the window size. A given longitudinal network can be analysed from various actor-level perspectives, such as exploring how actors change their degree centrality values or participation statistics over time. Determining the optimal window size for the analysis of a given longitudinal network from different actor-level perspectives is a well-researched network science problem. Many researchers have attempted to develop a solution to this problem by considering different approaches; however, to date, no comprehensive and well-acknowledged solution that can be applied to various longitudinal networks has been found. We propose a novel approach to this problem that involves determining the correct window size when a given longitudinal network is analysed from different actor-level perspectives. The approach is based on the concept of actor-level dynamicity, which captures variability in the structural behaviours of actors in a given longitudinal network. The approach is applied to four real-world, variable-sized longitudinal networks to determine their optimal window sizes. The optimal window length for each network, determined using the approach proposed in this paper, is further evaluated via time series and data mining methods to validate its optimality. Implications of this approach are discussed in this article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...