Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(44): 17727-17738, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37881900

RESUMO

The emergence of "nanomotors", "nanomachines", and "nanorobotics" has transformed dynamic nanoparticle research, driving a transition from passive to active and intelligent nanoscale systems. This review examines two critical fields: the investigation of airborne particles, significant contributors to air pollution, and the rapidly emerging domain of catalytic and field-controlled nano- and micromotors. We examine the basic concepts of nano- and micromachines in motion and envision their possible use in a gaseous medium to trap and neutralize hazardous particulates. While past studies described the application of nanotechnology and nanomotors in various scenarios, airborne nano/micromachine motion and their control have yet to be thoroughly explored. This review intends to promote multidisciplinary research on nanomachines' propulsion and task-oriented applications, highlighting their relevance in obtaining a cleaner atmospheric environment, a critical component to consider for human health.


Assuntos
Nanopartículas , Nanotecnologia , Humanos , Movimento (Física) , Catálise
2.
Adv Mater ; 31(12): e1807382, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30697826

RESUMO

The rheological properties of a colloidal suspension are a function of the concentration of the colloids and their interactions. While suspensions of passive colloids are well studied and have been shown to form crystals, gels, and glasses, examples of energy-consuming "active" colloidal suspensions are still largely unexplored. Active suspensions of biological matter, such as motile bacteria or dense mixtures of active actin-motor-protein mixtures have, respectively, reveals superfluid-like and gel-like states. Attractive inanimate systems for active matter are chemically self-propelled particles. It has so far been challenging to use these swimming particles at high enough densities to affect the bulk material properties of the suspension. Here, it is shown that light-triggered asymmetric titanium dioxide that self-propel, can be obtained in large quantities, and self-organize to make a gram-scale active medium. The suspension shows an activity-dependent tenfold reversible change in its bulk viscosity.

3.
Adv Mater ; 29(30)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28605070

RESUMO

Nanodiamonds are emerging as nanoscale quantum probes for bio-sensing and imaging. This necessitates the development of new methods to accurately manipulate their position and orientation in aqueous solutions. The realization of an "active" nanodiamond (ND) swimmer in fluids, composed of a ND crystal containing nitrogen vacancy centers and a light-driven self-thermophoretic micromotor, is reported. The swimmer is propelled by a local temperature gradient created by laser illumination on its metal-coated side. Its locomotion-from translational to rotational motion-is successfully controlled by shape-dependent hydrodynamic interactions. The precise engineering of the swimmer's geometry is achieved by self-assembly combined with physical vapor shadow growth. The optical addressability of the suspended ND swimmers is demonstrated by observing the electron spin resonance in the presence of magnetic fields. Active motion at the nanoscale enables new sensing capabilities combined with active transport including, potentially, in living organisms.


Assuntos
Nanodiamantes , Luz , Movimento (Física) , Nitrogênio , Temperatura
4.
Adv Mater ; 29(32)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28632337

RESUMO

The collective phenomena exhibited by artificial active matter systems present novel routes to fabricating out-of-equilibrium microscale assemblies. Here, the crystallization of passive silica colloids into well-controlled 2D assemblies is shown, which is directed by a small number of self-propelled active colloids. The active colloids are titania-silica Janus particles that are propelled when illuminated by UV light. The strength of the attractive interaction and thus the extent of the assembled clusters can be regulated by the light intensity. A remarkably small number of the active colloids is sufficient to induce the assembly of the dynamic crystals. The approach produces rationally designed colloidal clusters and crystals with controllable sizes, shapes, and symmetries. This multicomponent active matter system offers the possibility of obtaining structures and assemblies that cannot be found in equilibrium systems.

5.
Chem Commun (Camb) ; 51(41): 8660-3, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25905919

RESUMO

We demonstrate a simple physical fabrication method to control surface roughness of Janus micromotors and fabricate self-propelled active Janus microparticles with rough catalytic platinum surfaces that show a four-fold increase in their propulsion speed compared to conventional Janus particles coated with a smooth Pt layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...