Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(6): 564, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773003

RESUMO

This study investigated the impact of micropollutants on fish health from Segredo hydroelectric reservoir (HRS) along the Iguaçu River, Southern Brazil, contaminated by urban, industrial, and agricultural activities. This is the first comprehensive study assessment in the river after the severe drought in the 2020s in three fish species from different trophic levels Astyanax spp. (water column depth/omnivorous), Hypostomus commersoni (demersal/herbivorous), and Pimelodus maculatus (demersal/omnivorous). Animals, water, and sediment samples were collected from three distinct sites within the reservoir: Floresta (upstream), Iratim (middle), and Station (downstream). The chemical analysis revealed elevated concentrations of metals (Al, Cu, Fe) and the metalloid As in water, or Cu, Zn, and As in sediment, surpassing Brazilian regulatory limits, while the organic pollutants as DDT, PAHs, PCBs, and PBDEs were found under the Brazilian regulatory limits. The metal bioaccumulation was higher in gills with no significant differences among sites. The species Astyanax spp. and H. commersoni displayed variations in hepatosomatic index (HSI) and P. maculatus in the condition factor index (K) between sites, while adverse effects due to micropollutants bioaccumulation were observed by biochemical, genotoxic, and histopathological biomarkers. The principal component analysis and integrated biomarker response highlighted the upstream site Floresta as particularly inhospitable for biota, with distinctions based on trophic level. Consequently, this multifaceted approach, encompassing both fish biomarkers and chemical analyses, furnishes valuable insights into the potential toxic repercussions of micropollutant exposure. These findings offer crucial data for guiding management and conservation endeavors in the Iguaçu River.


Assuntos
Monitoramento Ambiental , Rios , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Brasil , Rios/química , Biomarcadores/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Metais/análise , Characidae , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , Sedimentos Geológicos/química , Peixes/metabolismo
2.
Toxics ; 12(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38787099

RESUMO

The synthetic hormone 17α ethinyl estradiol (EE2) is a molecule widely used in female contraceptives and recognized as a contaminant of attention (Watch List) in the European Union due to its high consumption, endocrine effects and occurrence in aquatic environments. Its main source of introduction is domestic sewage where it can be associated with other contaminants such as microplastics (MPs). Due to their characteristics, they can combine with each other and exacerbate their isolated effects on biota. This study evaluated the combined effects of microplastics (MPs) and 17α ethinylestradiol (EE2) on two tropical estuarine invertebrate species: Crassostrea gasar and Ucides cordatus. Polyethylene particles were spiked with EE2 and organisms were exposed to three treatments, categorized into three groups: control group (C), virgin microplastics (MPs), and spiked microplastics with EE2 (MPEs). All treatments were evaluated after 3 and 7 days of exposure. Oysters exhibited changes in phase 2 enzymes and the antioxidant system, oxidative stress in the gills, and reduced lysosomal membrane stability after exposure to MPs and MPEs. Crabs exposed to MPs and MPEs after seven days showed changes in phase 1 enzymes in the gills and changes in phases 1 and 2 enzymes in the hepatopancreas, such as disturbed cellular health. The combined effects of microplastics and EE2 increased the toxicity experienced by organisms, which may trigger effects at higher levels of biological organization, leading to ecological disturbances in tropical coastal ecosystems.

3.
Mar Pollut Bull ; 200: 116063, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278019

RESUMO

The most extensive oil spill ever recorded in tropical oceans occurred between August 2019 and March 2020, affecting approximately 3000 km of the Brazilian coast. This study assessed the chemical contamination and toxicity of sediments collected from affected reef areas during two sampling surveys conducted 17 and 24 months after the peak of oil slick inputs. Our results indicated that neither PAH levels nor measured toxicity showed a significant contribution from the spilled oil, with concentrations and biological effects indistinguishable from those in unaffected areas. Similarly, no differences were observed between seasons. Furthermore, there was no discernible relationship between sediment toxicity results and the measured PAH concentrations. Therefore, while biological responses indicated toxicity in most assessed areas, these responses are likely related to other local sources. This evidence suggests a natural oil attenuation process contributing to local environmental recovery. Nonetheless, further investigation is needed for other areas affected by oil spills.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poluição por Petróleo/análise , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos , Brasil , Petróleo/toxicidade , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 914: 169742, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163587

RESUMO

Marine Protected Areas (MPAs) are designed to conserve biodiversity and vulnerable ecosystems. This study aimed to assess the environmental quality of three Brazilian MPAs, based on the integrated analysis of biomarkers in pufferfish. The MPAs are differentiated by the degree of anthropogenic influences. The Barra do Una Estuary sustainable reserve (JUR) is a reference area due to its low levels of contamination and species diversity. The Cananéia Estuarine System (CAN) has been recognized as a biosphere reserve by UNESCO, as well as a Ramsar wetland. This MPA was influenced by upstream mining activities, resulting in the introduction of metals in the estuarine waters and the discharge of untreated urban sewage. The São Vicente estuary (SSV) lacks proper sanitation infrastructure. All collections were conducted during winter season, and, after collection, the animals were euthanized, their soft tissues were removed, and multiple biomarkers were analyzed in the gills and liver, as biometric, genotoxic, biochemical, and morphological. A one-factor multivariate analysis was applied to evaluate the differences between the data sets, and the matrices were analyzed using PERMANOVA to evaluate the "estuary" factor. The results were integrated using PCA with a 0.4 cut value and an Enhanced Integrated Biomarker Response (EIBR) was calculated. PCA was correlated with biochemical, genotoxic, and morphological biomarkers. In general, SVV differed from CAN and JUR as shown by both univariate and multivariate analyses. SVV also showed the highest EIBR, followed by CAN. Organisms from SSV showed greater gill pathology, elevated AChE activity and lipoperoxidation (LPO), and micronuclei frequency. CAN present intermediate EIBR, with severe pathologies in the liver. CAN seems to present an intermediate environmental quality between SSV and JUR indicating the importance of the existence of MPAs for environmental conservation and the need to monitor such areas, to maintain their suitable environmental quality.


Assuntos
Ecossistema , Tetraodontiformes , Animais , Brasil , Biomarcadores , Saúde Ambiental , Monitoramento Ambiental/métodos
5.
Sci Total Environ ; 912: 168790, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38000735

RESUMO

Biological communities are currently facing multi-stressor scenarios whose ecological impacts are challenging to estimate. In that respect, considering the complex nature of ecosystems and types and interaction among stressors is mandatory. Microcosm approaches using free-living nematode assemblages can effectively be used to assess complexity since they preserve the interactions inherent to complex systems when testing for multiple stress effects. In this study, we investigated the interaction effects of three stress factors, namely i-metallic mixture of Cu, Pb, Zn, and Hg (control [L0], low, [L1] and high [L2]), ii- CO2-driven acidification (pH 7.6 and 8.0), and iii- temperature rise (26 and 28 °C), on estuarine free-living nematode assemblages. Metal contamination had the greatest influence on free-living nematode assemblages, irrespective of pH and temperature scenarios. Interestingly, whilst the most abundant free-living nematode genera showed significant decreases in their densities when exposed to contamination, other, less abundant, genera were apparently favored and showed significantly higher densities in contaminated treatments. The augmented densities of tolerant genera may be attributed to indirect effects resulting from the impacts of toxicity on other components of the system, indicating the potential for emergent effects in response to stress. Temperature and pH interacted significantly with contamination. Whilst temperature rise had potentialized contamination effects, acidification showed the opposite trend, acting as a buffer to the effects of contamination. Such results show that temperature rise and CO2-driven acidification interact with contamination on coastal waters, highlighting the importance of considering the intricate interplay of these co-occurring stressors when assessing the ecological impacts on coastal ecosystems.


Assuntos
Mercúrio , Nematoides , Animais , Ecossistema , Dióxido de Carbono/toxicidade , Mercúrio/farmacologia , Biota
6.
Chemosphere ; 349: 140812, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38036225

RESUMO

Bioaccumulation studies in fish mark the initial phase of assessing the risk of chemical exposure to biota and human populations. The Iguaçu River boasting a diverse endemic ichthyofauna, is grappling with the repercussions of human activities. This study delved into the bioaccumulation of micropollutants, the early-warning effects on Rhamdia quelen and Oreochomis niloticus in the Segredo Reservoir (HRS) and the potential risk of human exposure. Two groups of caged fish in three sites of the reservoir were exposed during the autumn-winter and spring-summer, while a third group (O. niloticus) underwent a twelve-month exposure, and inorganic and organic chemicals analysis in water, sediment, and biota. Additionally, metallothionein expression and genotoxicity were employed as biomarkers. PAHs, PCBs, Al, Cu, Fe, and As in water and DDTs, Cu, Zn, and As in sediment surpassed the thresholds set by Brazilian regulations, where DDT exhibited bioaccumulation in muscle, alongside metals in liver, kidney, gills, and muscle tissues. R. quelen showed metallothionein expression whereas DNA damage and NMA frequencies were elevated in target organs and in brain and erythrocytes of O. niloticus during summer. In this species the DNA damage in liver was remarkable after twelve months. Target Hazard Quotients and Cancer Risk values shedding light on the vulnerability of both children and adults. The reservoir's conditions led to heightened sensitivity to micropollutants for R. quelen species. The data presented herein provides decision-makers with pertinent insights to facilitate effective management and conservation initiatives within the Iguaçu Basin.


Assuntos
Peixes-Gato , Poluentes Ambientais , Animais , Criança , Humanos , Rios , Brasil , Monitoramento Ambiental , Bioacumulação , Água , Metalotioneína
7.
Mar Pollut Bull ; 193: 115170, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329735

RESUMO

This study aimed to evaluate B[a]P and low-density polyethylene microplastics (MPs) toxicty, alone and in mixture (0.03 to 30 µg L-1 of B[a]P; and 5, 50 and 500 mg L-1 for MPs). Five mg L-1 of MPs is considerably higher than commonly reported environmental concentrations, although it has been reported for marine environments. Individual (sea urchin embryo-larval development and mortality of mysids) and sub-individual responses (LPO and DNA damage in mysids) were assessed. The toxicity increased as the B[a]P concentration increased, and microplastics alone did not cause toxicity. B[a]P toxicity was not modified by the lowest concentration of MPs (5 mg L-1), but at higher MPs concentrations (50 and 500 mg L-1), the effects of B[a]P on sea urchin development and in biomarkers in mysids were diminished. Microplastics interacted with B[a]P in seawater, reducing its toxicity, probably due to adsorption of B[a]P to the surface of microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Benzo(a)pireno/toxicidade , Organismos Aquáticos , Invertebrados , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 885: 163687, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37137370

RESUMO

Interactive effects of trace metal contamination, ocean warming, and CO2-driven acidification on the structure of a meiofaunal benthic community was assessed. Meiofauna microcosm bioassays were carried out in controlled conditions in a full factorial experimental design which included three fixed factors: metal contamination in the sediment (3 levels of a mixture of Cu, Pb, Zn, and Hg), temperature (26 and 28 °C) and pH (7.6 and 8.1). Metal contamination caused a sharp decrease in the densities of the most abundant meiobenthic groups and interacted with temperature rise, exacerbating deleterious effects for Nematoda and Copepoda, but mitigating effects for Acoelomorpha. CO2-driven acidification resulted in increased acoelomorphs density, but only in sediments with lower levels of metals. Copepod densities, in turn, were lower in the CO2-driven acidification scenario regardless of contamination or temperature. The results obtained in the present study showed that temperature rise and CO2-driven acidification of coastal ocean waters, at environmentally relevant levels, interacts with trace metals in marine sediments, differently affecting the major groups of benthic biota.


Assuntos
Nematoides , Oligoelementos , Animais , Dióxido de Carbono , Concentração de Íons de Hidrogênio , Metais/toxicidade , Oceanos e Mares , Sedimentos Geológicos/química
9.
Sci Total Environ ; 872: 162215, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36791867

RESUMO

Chlorothalonil is an organochlorine compound that has long been used in agriculture. In recent years, this compound has been used as an antifouling booster biocide and its presence has been reported in marine coastal environments, especially in navigational areas. Although sediment can be a sink for chlorothalonil due to high affinity to fine particulate matter, toxicity studies with non-target marine and/or estuarine organisms is focused on waterborne exposure only. This study aimed to determine sediment-borne ecotoxicological effects of chlorothalonil on different benthic organisms of the Latin American biota using a integrative multilevel approach. Marine/estuarine organisms were exposed to sediments spiked with chlorothalonil (from 0 to 10.0 µg g-1) and effects at sub-individual (biochemical biomarkers in Anomalocardia flexuosa), individual (lethal effects to Tiburonella viscana and Artemia salina) and subpopulation levels (Nitokra sp. reproduction) were assessed. Increasing chlorothalonil concentrations in sediment caused increasing ecotoxicological effects in different levels of biological organisation, from biochemical to subpopulation levels. The highest exposure concentrations showed increased biomarkers of effects (lipid peroxidation and DNA damage in gills and/or digestive gland of A. flexuosa), lower fecundity and lower survival of the test organisms. GPx activity associated with LPO levels in the digestive gland suggested a response to the oxidant challenge provided by the biocide. At the lowest concentration (0.001 µg g-1), chlorothalonil detoxification mechanisms and defense against its oxidising action, involving GSH and glutathione-dependent enzymes (GST and GPx) were induced. At intermediate concentrations, there was a tendency of decreasing GSH levels, probably due to conjugation with chlorothalonil, which also affected the activities of the glutathione-dependent enzymes. At the highest tested concentration (10.0 µg g-1), chlorothalonil may have restimulated GSH synthesis in the gills of A. flexuosa, although the prooxidant activity has induced effects. This study contributes to assessing the environmental risk of chlorothalonil in sediment for non-target marine and estuarine organisms.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Animais , América Latina , Glutationa , Organismos Aquáticos , Biomarcadores , Reprodução , Poluentes Químicos da Água/toxicidade
10.
Microb Ecol ; 86(1): 297-310, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35610383

RESUMO

Microbial communities in freshwater sediments play an important role in organic matter remineralization, contributing to biogeochemical cycles, nutrient release, and greenhouse gases emissions. Bacterial and archaeal communities might show spatial or seasonal patterns and were shown to be influenced by distinct environmental parameters and anthropogenic activities, including pollution and damming. Here, we determined the spatial variation and the environmental variables influencing the abundant and rare bacterial and archaeal communities in the sediments of eutrophic-hypereutrophic reservoirs from a tropical urban area in Brazil. The most abundant microbes included mainly Anaerolineae and Deltaproteobacteria genera from the Bacteria domain, and Methanomicrobia genera from the Archaea domain. Microbial communities differed spatially in each reservoir, reflecting the establishment of specific environmental conditions. Locations with better or worst water quality, or close to a dam, showed more distinct microbial communities. Besides the water column depth, microbial communities were affected by some pollution indicators, including total phosphorus, orthophosphate, electrical conductivity, and biochemical oxygen demand. Distinct proportions of variation were explained by spatial and environmental parameters for each microbial community. Furthermore, spatial variations in environmental parameters affecting these communities, especially the most distinct ones, contributed to microbial variations mediated by spatial and environmental properties together. Finally, our study showed that different pressures in each reservoir affected the sediment microbiota, promoting different responses and possible adaptations of abundant and rare bacterial and archaeal communities.


Assuntos
Archaea , Sedimentos Geológicos , Archaea/genética , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Qualidade da Água
11.
Chemosphere ; 304: 135169, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35671813

RESUMO

Domestic sewage is an important source of pollutants in aquatic ecosystems and includes both microplastics (MPs) and pharmaceuticals and personal care products (PPCPs). This study sought to assess the biological effects of the interaction between plastic particles and the antibacterial agent triclosan (TCS). The study relied on the swamp ghost crab Ucides cordatus as a model. Herein polyethylene particles were contaminated with triclosan solution. Triclosan concentrations in the particles were then chemically analyzed. Swamp ghost crab specimens were exposed to experimental compounds (a control, microplastics, and microplastics with triclosan) for 7 days. Samplings were performed on days 3 (T3) and 7 (T7). Gill, hepatopancreas, muscle and hemolymph tissue samples were collected from the animals to evaluate the biomarkers ethoxyresorufin O-deethylase (EROD), dibenzylfluorescein dealkylase (DBF), glutathione S-transferase (GST), glutathione peroxidase (GPx), reduced glutathione (GSH), lipid peroxidation (LPO), DNA strands break (DNA damage), cholinesterase (ChE) through protein levels and neutral red retention time (NRRT). Water, organism, and microplastic samples were collected at the end of the assay for post-exposure chemical analyses. Triclosan was detected in the water and crab tissue samples, results which indicate that microplastics serve as triclosan carriers. Effects on the gills of organisms exposed to triclosan-spiked microplastics were observed as altered biomarker results (EROD, GST, GPx, GSH, LPO, DNA damage and NRRT). The effects were more closely associated with microplastic contaminated with triclosan exposure than with microplastic exposure, since animals exposed only to microplastics did not experience significant effects. Our results show that microplastics may be important carriers of substances of emerging interest in marine environments in that they contaminate environmental matrices and have adverse effects on organisms exposed to these stressors.


Assuntos
Anti-Infecciosos , Braquiúros , Triclosan , Poluentes Químicos da Água , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biomarcadores/metabolismo , Braquiúros/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Ecossistema , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Microplásticos/toxicidade , Plásticos/metabolismo , Polietileno/metabolismo , Triclosan/metabolismo , Água/metabolismo , Poluentes Químicos da Água/metabolismo , Áreas Alagadas
12.
Environ Monit Assess ; 194(7): 497, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35695983

RESUMO

Chronic exposure to multiple pollutants affects aquatic organisms, even at low concentrations, and can impair fishery activities along marine coastlines. The bioavailability of toxic metals and the presence of metals and polycyclic aromatic hydrocarbons (PAHs) in both water and sediment can explain the worst-case scenario of fish health and fishery production decline along the Algeria coastline. The hepatosomatic index (HIS), gonadosomatic index (GSI), and condition factor (K) in the studied species from the Algiers, Bou Ismail, and Zemmouri bays are the first indicators of the poor environmental health along the studied region. These findings could be explained by the bioavailability of Zn, Cu, Cr, Mn, Hg, and Ni and the detection of PAHs in the water and sediment of these bays. Additionally, histopathological damage in the liver is described in sardine (Sardina pilchardus), anchovy (Engraulis encrasicolus), and sardinelle (Sardinella aurita) highlights the current study in the investigation of the risk of exposure to biota or human populations. The occurrence of permanent lesions in the livers of fish impairs organ function and increases the incidence of diseases affecting the fish community. Furthermore, the factor analysis with principal component analysis (FA/PCA) dataset explains the physiological disturbances described in all studied species. These findings revealed that Zemmouri bay is the most affected by chemicals, suggesting that S. pilchardus is the most sensitive species. Finally, the results showed that the bioavailability of chemicals present in the studied bays confirms poor water quality, which can explain the decrease in fishery production along the Algerian Coastline.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Argélia , Animais , Baías , Monitoramento Ambiental/métodos , Pesqueiros , Peixes , Mar Mediterrâneo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
13.
Mar Pollut Bull ; 181: 113828, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716493

RESUMO

Although the simplification of multivariate histopathological data into univariate indices can be useful for the assessment of environmental quality, this implies a great loss of information. The objective of the present study was to evaluate the effectiveness, in the context of environmental quality assessment, of an approach that integrates individual histopathological responses in a discriminated manner with the results of contaminants by means of multivariate analyses. This analysis was compared to the diagnosis of environmental quality provided by the use of the univariate Bernet histopathological index. Contaminant loads (sediments and fish) and the liver histopathology of Cathorops spixii were integrated through multivariate analysis. Integrated individual histopathological responses allowed classifying environmental quality from more to less impacted sites, while the univariate index showed some inconsistencies with chemical loads and allowed identifying only the most impacted site.


Assuntos
Peixes-Gato , Poluentes Químicos da Água , Animais , Biomarcadores , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Fígado/química , Poluentes Químicos da Água/análise
14.
Mar Pollut Bull ; 178: 113590, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35367694

RESUMO

The gastrointestinal tract and its enteric nervous system are the first routes of food and xenobiotics uptake. Considering the importance of this organ, this study evaluated intestinal biomarkers of Sphoeroides testudineus integrating the data to generate tools for pollution assessment. The fish were collected in three sites of São Paulo Coast and their intestines were analyzed for biochemical, histology, and neuronal density and morphometry biomarkers. To evaluate the differences among the data, a PERMANOVA was applied, followed by a FA/PCA. The PERMANOVA indicated differences (P < 0.001) between the regions (RA, A1, and A2). Four factors were extracted from the FA/PCA (62% cumulative), showing that the animals from A2 presented severe alterations, mainly in intestinal morphometry and neuronal density. A1 alterations refer mainly to the increase of neuronal metabolism. Our results also evidence a gradient of environmental quality related to the protection level (AR > A1 > A2).


Assuntos
Poluição Ambiental , Tetraodontiformes , Animais , Biomarcadores/metabolismo , Brasil , Intestinos/química , Tetraodontiformes/metabolismo
15.
Mar Pollut Bull ; 177: 113469, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35248887

RESUMO

Methods to assess the effects of contaminants on marine organisms typically involve euthanasia to obtain samples, but less invasive techniques may be more appropriate for working with threatened species. In this study, were assessed the biological responses of crabs exposed to microplastics and contaminants of emerging concern. Biochemical and cellular effects (lipid peroxidation, DNA damage, cholinesterase activity, and lysosomal membrane stability) in hemolymph were analyzed in a kinetic study, at 3 and 7 days, in U. cordatus exposed to microplastics spiked with Triclosan (TCS) or 17α-Ethynylestradiol (EE2). The results showed that the contaminants were produced toxic effects in the crabs exposed either to the microplastics alone (oxidative stress, genotoxicity, and neurotoxicity), or to microplastics with TCS or EE2 adsorbed (neurotoxic and cytotoxic). The present study showed the responsiveness of non-lethal analyzes to understanding the biological effects of combined exposure to microplastics and chemical pollution.


Assuntos
Cosméticos , Poluentes Químicos da Água , Animais , Biomarcadores , Cosméticos/toxicidade , Microplásticos/toxicidade , Preparações Farmacêuticas , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Sci Total Environ ; 815: 152944, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007601

RESUMO

Natural pH values in coastal waters vary largely among locations, ecosystems, and time periods; still, there is an ongoing acidification trend. In this scenario, more acidic pH values can alter bioavailability of organic contaminants, to organisms. Despite this, interactive effects between pH and chemical substances are not usually considered in Ecological Risk Assessment protocols. This study investigated the effects of pH on the toxicity of a hydrophobic organic compound on a benthic community using a microcosm experiment setup to assess the response of nematode assemblages exposed to environmentally relevant concentrations of Irgarol at two natural pH conditions. Estuarine nematode assemblages were exposed to two concentrations of Irgarol at pH 7.0 and 8.0 for periods of 7 and 35 days. Lower diversity of nematode genera was observed at the highest tested Irgarol concentration (1281 ± 65 ng.g-1). The results showed that the effects of Irgarol contamination were independent of pH variation, indicating no influence of acidification within this range on the toxicity of Irgarol to benthic meiofauna. However, the results showed that estuarine nematode assemblages are impacted by long-term exposure to low (but naturally occurring) pHs. This indicates that estuarine organisms may be under naturally high physiological pressure and that permanent changes in the ecosystem's environmental factors, such as future coastal ocean acidification, may drive organisms closer to the edges of their tolerance windows.


Assuntos
Nematoides , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Água do Mar , Triazinas/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
18.
Environ Sci Pollut Res Int ; 29(7): 10122-10137, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34510342

RESUMO

Estuaries in the world are affected by different contamination sources related to urbanisation and port/industrial activities. Identifying the substances responsible for the environmental toxicity in estuaries is challenging due to the multitude of stressors, both natural and anthropogenic. The Toxicity Identification and Evaluation (TIE) is a suitable way of determining causes of toxicity of sediments, but it poses difficulties since its application is labour intensive and time consuming. The aim of this study is to evaluate the diagnosis provided by a TIE based on microscale embryotoxicity tests with interstitial water (IW) to identify toxicants in estuarine sediments affected by multiple stressors. TIE showed toxicity due to different combinations of metals, apolar organic compounds, ammonia and sulphides, depending on the contamination source closest to the sampling station. The microscale TIE was able to discern different toxicants on sites subject to different contamination sources. There is good agreement between the results indicated in the TIE and the chemical analyses in whole sediment, although there are some disagreements, either due to the sensitivity of the test used, or due to the particularities of the use of interstitial water to assess the sediment toxicity. The improvement of TIE methods focused on identifying toxicants in multiple-stressed estuarine areas are crucial to discern contamination sources and subsidise management strategies.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Monitoramento Ambiental , Estuários , Metais/análise , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
19.
Sci Total Environ ; 770: 145245, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33736403

RESUMO

The traditional sediment quality triad generally uses three lines of evidence (LOE) in the assessment, integrating environmental chemistry, ecology and ecotoxicology. However the assessment is performed without considering the multivariate structure within LOE. In order to improve the sediment quality assessment, the M-Triad is proposed. Instead of averaging the values within a LOE, the new approach is based on the Euclidean distance between each sampling station and the reference station (s) for each LOE. These distances are then plotted in a radar-chart to obtain the area of the triangle and the quality assessment is subsequently obtained from the difference between the triangle areas of the impacted and the reference station. Three studies were selected to test the applicability of the M-Triad. In two cases, the M-Triad returned a more realistic ranking of the stations as observed in the principal component analysis (PCA) from each LOE By including the Euclidean distance, the use of M-Triad is advantageous when multiple variables with negative or uncorrelated patterns within a LOE are analyzed simultaneously. The combination of the M-Triad and the results of the PCA allows one to identify multiple contamination gradients and how biota and bioassays respond to each of these gradients. In comparison to the traditional method, the M-Triad reduces the uncertainty of the final analysis, permitting a more comprehensive ecological assessment.

20.
Bull Environ Contam Toxicol ; 107(1): 62-68, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33638674

RESUMO

The major fire at the fuel storage tanks of a Chemical Terminal in April 2015 at the Port of Santos (SP), SE Brazil, potentially caused significant environmental impacts to the Santos Estuarine System (SES). The aim of the study was to identify the classes of substances causing pore water toxicity in the SES sediments in the vicinity of the port terminal before and after the incident using the TIE approach. Our results suggest that nonpolar compounds (e.g. PAHs, BTX, oil and grease) from the storage tanks that burned, and surfactants present in the formulation of foam fire extinguishing agents were the responsible for the sediment toxicity observed in the vicinity of the incident site. The contribution of metals to the toxicity related to the incident was ruled out. A long-term monitoring of the environmental effects of the incident is recommended since substances for which evidence of toxicity was found are toxic, persistent and can accumulate in the biota.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Brasil , Monitoramento Ambiental , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...