Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(33): e2305393120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37556498

RESUMO

Toxin-antitoxin (TA) systems are a large group of small genetic modules found in prokaryotes and their mobile genetic elements. Type II TAs are encoded as bicistronic (two-gene) operons that encode two proteins: a toxin and a neutralizing antitoxin. Using our tool NetFlax (standing for Network-FlaGs for toxins and antitoxins), we have performed a large-scale bioinformatic analysis of proteinaceous TAs, revealing interconnected clusters constituting a core network of TA-like gene pairs. To understand the structural basis of toxin neutralization by antitoxins, we have predicted the structures of 3,419 complexes with AlphaFold2. Together with mutagenesis and functional assays, our structural predictions provide insights into the neutralizing mechanism of the hyperpromiscuous Panacea antitoxin domain. In antitoxins composed of standalone Panacea, the domain mediates direct toxin neutralization, while in multidomain antitoxins the neutralization is mediated by other domains, such as PAD1, Phd-C, and ZFD. We hypothesize that Panacea acts as a sensor that regulates TA activation. We have experimentally validated 16 NetFlax TA systems and used domain annotations and metabolic labeling assays to predict their potential mechanisms of toxicity (such as membrane disruption, and inhibition of cell division or protein synthesis) as well as biological functions (such as antiphage defense). We have validated the antiphage activity of a RosmerTA system encoded by Gordonia phage Kita, and used fluorescence microscopy to confirm its predicted membrane-depolarizing activity. The interactive version of the NetFlax TA network that includes structural predictions can be accessed at http://netflax.webflags.se/.


Assuntos
Antitoxinas , Toxinas Bacterianas , Antitoxinas/genética , Toxinas Bacterianas/metabolismo , Células Procarióticas/metabolismo , Óperon/genética , Biologia Computacional , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
FEBS Open Bio ; 12(1): 130-145, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655277

RESUMO

Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosyl methionine from l-methionine and ATP. MAT enzymes are ancient, believed to share a common ancestor, and are highly conserved in all three domains of life. However, the sequences of archaeal MATs show considerable divergence compared with their bacterial and eukaryotic counterparts. Furthermore, the structural significance and functional significance of this sequence divergence are not well understood. In the present study, we employed structural analysis and ancestral sequence reconstruction to investigate archaeal MAT divergence. We observed that the dimer interface containing the active site (which is usually well conserved) diverged considerably between the bacterial/eukaryotic MATs and archaeal MAT. A detailed investigation of the available structures supports the sequence analysis outcome: The protein domains and subdomains of bacterial and eukaryotic MAT are more similar than those of archaea. Finally, we resurrected archaeal MAT ancestors. Interestingly, archaeal MAT ancestors show substrate specificity, which is lost during evolution. This observation supports the hypothesis of a common MAT ancestor for the three domains of life. In conclusion, we have demonstrated that archaeal MAT is an ideal system for studying an enzyme family that evolved differently in one domain compared with others while maintaining the same catalytic activity.


Assuntos
Archaea , Metionina Adenosiltransferase , Archaea/genética , Archaea/metabolismo , Domínio Catalítico , Metionina , Metionina Adenosiltransferase/química , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , S-Adenosilmetionina/química
3.
Biochemistry ; 58(3): 166-170, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30406995

RESUMO

Methyltransferases (MTases) are superfamilies of enzymes that catalyze the transfer of a methyl group from S-adenosylmethionine (SAM), a nucleoside-based cofactor, to a wide variety of substrates such as DNA, RNA, proteins, small molecules, and lipids. Depending upon their structural features, the MTases can be further classified into different classes; we consider exclusively the largest class of MTases, the Rossmann-fold MTases. It has been shown that the nucleoside cofactor-binding Rossmann enzymes, particularly the nicotinamide adenine dinucleotide (NAD)-, flavin adenine dinucleotide (FAD)-, and SAM-binding MTases enzymes, share common binding motifs that include a Gly-rich loop region that interacts with the cofactor and a highly conserved acidic residue (Asp/Glu) that interacts with the ribose moiety of the cofactor. Here, we observe that the Gly-rich loop region of the Rossmann MTases adapts a specific type II' ß-turn in the proximity of the cofactor (<4 Å), and it appears to be a key feature of these superfamilies. Additionally, we demonstrate that the conservation of this ß-turn could play a critical role in the enzyme-cofactor interaction, thereby shedding new light on the structural conformation of the Gly-rich loop region from Rossmann MTases.


Assuntos
Metiltransferases/química , Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , Alanina/genética , Sítios de Ligação , Coenzimas/química , Coenzimas/metabolismo , Simulação por Computador , Flavina-Adenina Dinucleotídeo/química , Glicina/genética , Glicina/metabolismo , Metilação , Metiltransferases/genética , Mutagênese , NAD/metabolismo , Conformação Proteica , Dobramento de Proteína , S-Adenosilmetionina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...