Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 30: 131-139, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31767164

RESUMO

OBJECTIVE: Fibroblast growth factor 19 (FGF19) is a postprandial hormone which plays diverse roles in the regulation of bile acid, glucose, and lipid metabolism. Administration of FGF19 to obese/diabetic mice lowers body weight, improves insulin sensitivity, and enhances glycemic control. The primary target organ of FGF19 is the liver, where it regulates bile acid homeostasis in response to nutrient absorption. In contrast, the broader pharmacologic actions of FGF19 are proposed to be driven, in part, by the recruitment of the thermogenic protein uncoupling protein 1 (UCP1) in white and brown adipose tissue. However, the precise contribution of UCP1-dependent thermogenesis to the therapeutic actions of FGF19 has not been critically evaluated. METHODS: Using WT and germline UCP1 knockout mice, the primary objective of the current investigation was to determine the in vivo pharmacology of FGF19, focusing on its thermogenic and anti-obesity activity. RESULTS: We report that FGF19 induced mRNA expression of UCP1 in adipose tissue and show that this effect is required for FGF19 to increase caloric expenditure. However, we demonstrate that neither UCP1 induction nor an elevation in caloric expenditure are necessary for FGF19 to induce weight loss in obese mice. In contrast, the anti-obesity action of FGF19 appeared to be associated with its known physiological role. In mice treated with FGF19, there was a significant reduction in the mRNA expression of genes associated with hepatic bile acid synthesis enzymes, lowered levels of hepatic bile acid species, and a significant increase in fecal energy content, all indicative of reduced lipid absorption in animals treated with FGF19. CONCLUSION: Taken together, we report that the anti-obesity effect of FGF19 occurs in the absence of UCP1. Our data suggest that the primary way in which exogenous FGF19 lowers body weight in mice may be through the inhibition of bile acid synthesis and subsequently a reduction of dietary lipid absorption.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/genética , Resistência à Insulina , Metabolismo dos Lipídeos , Lipogênese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Obesidade/metabolismo , Termogênese , Proteína Desacopladora 1/genética
2.
Obes Surg ; 28(3): 725-734, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28861731

RESUMO

PURPOSE: Ileal interposition recapitulates many of the metabolic improvements similar to Roux-en-Y gastric bypass. We aimed to determine whether the metabolic improvements seen following ileal interposition were conferred solely by the interposed segment by examining changes in neighboring intestinal segments as well as the composition of the bile acid pool. MATERIALS AND METHODS: Adult male rats were treated with either sham or ileal interposition surgeries. Glucose tolerance tests, body composition analysis, polymer chain reaction, enzyme-linked immunosorbent assay, and mass spectrometry were done after the surgeries. RESULTS: This study showed that ileal interposition improved glucose tolerance and enhanced both fasting and glucose-stimulated GLP-1 secretion in diabetic rats. Total bile acid pool was similar between groups but the composition favored glycine-conjugation in rats with ileal interposition. Insulin secretion was highly correlated with the 12-alpha-hydroxylase index of activity. The interposed ileum exhibited an increase in mRNA for preproglucagon and peptide YY; however, the bile acid transporter, apical sodium bile acid transporter, was dramatically reduced compared to sham rats. The interposed segment becomes jejunized in its new location as indicated by an increase in Glut2 and Pepck mRNA, genes predominantly synthesized within the jejunum. CONCLUSION: Ileal relocation alone can significantly alter the bile acid pool to favor a more insulin-sensitive metabolism in association with intestinal wide alterations in mRNA for a variety of genes. Ileal interposition may confer metabolic improvement via both the interposed segment and the associated intestinal changes in all segments of the intestine, including the colon.


Assuntos
Adaptação Fisiológica/genética , Ácidos e Sais Biliares/metabolismo , Íleo/fisiopatologia , Resistência à Insulina/genética , Intestinos/fisiopatologia , Adaptação Fisiológica/fisiologia , Animais , Diabetes Mellitus Experimental/cirurgia , Modelos Animais de Doenças , Glucose/metabolismo , Íleo/cirurgia , Insulina/metabolismo , Resistência à Insulina/fisiologia , Mucosa Intestinal/metabolismo , Intestinos/cirurgia , Masculino , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...