Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726742

RESUMO

Motion analysis systems based on a single markerless RGB-D camera are more suitable for clinical practice than multi-camera marker-based reference systems. Nevertheless, the validity of RGB-D cameras for motor function assessment in some diseases affecting gait, such as Transthyretin Familial Amyloid Polyneuropathy (TTR-FAP), is yet to be investigated. In this study, the agreement between the Kinect v2 and a reference system for obtaining spatiotemporal and kinematic gait parameters was evaluated in the context of TTR-FAP. 3-D body joint data provided by both systems were acquired from ten TTR-FAP symptomatic patients, while performing ten gait trials. For each gait cycle, we computed several spatiotemporal and kinematic gait parameters. We then determined, for each parameter, the Bland Altman's bias and 95% limits of agreement, as well as the Pearson's and concordance correlation coefficients, between systems. The obtained results show that an affordable, portable and non-invasive system based on an RGB-D camera can accurately obtain most of the studied gait parameters (excellent or good agreement for eleven spatiotemporal and one kinematic). This system can bring more objectivity to motor function assessment of polyneuropathy patients, potentially contributing to an improvement of TTR-FAP treatment and understanding, with great benefits to the patients' quality of life.


Assuntos
Neuropatias Amiloides Familiares/diagnóstico , Marcha/fisiologia , Polineuropatias/diagnóstico , Fenômenos Biomecânicos , Humanos , Qualidade de Vida
2.
Clin Neurol Neurosurg ; 186: 105537, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31605896

RESUMO

OBJECTIVE: Axial motor features are common in Parkinson's disease (PD). These include gait impairment and postural abnormalities, such as camptocormia. The response of these symptoms to deep brain stimulation (DBS) is variable and difficult to assess objectively. For the first time, this study analyzes the treatment outcomes of two PD patients with camptocormia that underwent bilateral subthalamic nucleus (STN)-DBS evaluated with disruptive technologies. PATIENTS AND METHODS: Two patients with PD and camptocormia who underwent STN-DBS were included. Gait parameters were quantitatively assessed before and after surgery by using the NeuroKinect system and the camptocormia angle was measured using the camptoapp. RESULTS: After surgery, patient 1 improved 29 points in the UPDRS-III. His camptocormia angle was 68° before and 38° after surgery. Arm and knee angular amplitudes (117.32 ±â€¯7.47 vs 134.77 ±â€¯2.70°; 144.51 ±â€¯7.47 vs 169.08 ±â€¯3.27°) and arm swing (3.59 ±â€¯2.66 vs 5.40 ±â€¯1.76 cm) improved when compared with his preoperative measurements. Patient 2 improved 22 points in the UPDRS-III after surgery. Her camptocormia mostly resolved (47° before to 9° after surgery). Gait analysis revealed improvement of stride length (0.29 ±â€¯0.03 vs 0.35 ±â€¯0.03 m), stride width (18.25 ±â€¯1.16 vs 17.9 ±â€¯0.84 cm), step velocity (0.91 ±â€¯0.57 vs 1.33 ±â€¯0.48 m/s), arm swing (4.51 ±â€¯1.01 vs 7.38 ±â€¯2.71 cm) and arm and hip angular amplitudes (131.57 ±â€¯2.45° vs 137.75 ±â€¯3.18; 100.51 ±â€¯1.56 vs 102.18 ±â€¯1.77°) compared with her preoperative results. CONCLUSION: The gait parameters and camptocormia of both patients objectively improved after surgery, as assessed by the two quantitative measurement systems. STN-DBS might have a beneficial effect on controlling axial posturing and gait, being a potential surgical treatment for camptocormia in patients with PD. However, further studies are needed to derive adequate selection criteria for this patient population.


Assuntos
Estimulação Encefálica Profunda/métodos , Análise da Marcha/métodos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/terapia , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Curvaturas da Coluna Vertebral/diagnóstico , Curvaturas da Coluna Vertebral/terapia , Idoso , Feminino , Marcha/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia Muscular Espinal/complicações , Doença de Parkinson/complicações , Curvaturas da Coluna Vertebral/complicações
3.
J Biomech ; 87: 189-196, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30914189

RESUMO

RGB-D cameras provide 3-D body joint data in a low-cost, portable and non-intrusive way, when compared with reference motion capture systems used in laboratory settings. In this contribution, we evaluate the validity of both Microsoft Kinect versions (v1 and v2) for motion analysis against a Qualisys system in a simultaneous protocol. Two different walking directions in relation to the Kinect (towards - WT, and away - WA) were explored. For each gait trial, measures related with all body parts were computed: velocity of all joints, distance between symmetrical joints, and angle at some joints. For each measure, we compared each Kinect version and Qualisys by obtaining the mean true error and mean absolute error, Pearson's correlation coefficient, and optical-to-depth ratio. Although both Kinect v1 and v2 and/or WT and WA data present similar accuracy for some measures, better results were achieved, overall, when using WT data provided by the Kinect v2, especially for velocity measures. Moreover, the velocity and distance presented better results than angle measures. Our results show that both Kinect versions can be an alternative to more expensive systems such as Qualisys, for obtaining distance and velocity measures as well as some angles metrics (namely the knee angles). This conclusion is important towards the off-lab non-intrusive assessment of motor function in different areas, including sports and healthcare.


Assuntos
Técnicas Biossensoriais/normas , Marcha/fisiologia , Movimento (Física) , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Articulação do Joelho , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Software , Caminhada , Adulto Jovem
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5494-5497, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947098

RESUMO

Transthyretin Familial Amyloid Polyneuropathy (TTR-FAP) is a rare and disabling neurological disorder caused by a mutation of the transthyretin gene. One of the disease's characteristics that mostly affects patients' quality of life is its influence on locomotion, with a variable evolution timing. Quantitative motion analysis is useful for assessing motor function, including gait, in diseases affecting movement. However, it is still an evolving field, especially in TTR-FAP, with only a few available studies. A single markerless RGB-D camera provides 3-D body joint data in a less expensive, more portable and less intrusive way than reference multi-camera marker-based systems for motion capture. In this contribution, we investigate if a gait analysis system based on a RGB-D camera can be used to detect gait changes over time for a given TTR-FAP patient. 3-D data provided by that system and a reference system were acquired from six TTR-FAP patients, while performing a simple gait task, once and then a year and a half later. For each gait cycle and system, several gait parameters were computed. For each patient, we investigated if the RBG-D camera system is able to detect the existence or not of statistically significant differences between the two different acquisitions (separated by 1.5 years of disease evolution), in a similar way to the reference system. The obtained results show the potential of using a single RGB-D camera to detect relevant changes in spatiotemporal gait parameters (e.g., stride duration and stride length), during TTR-FAP patient follow-up.


Assuntos
Neuropatias Amiloides Familiares , Análise da Marcha , Neuropatias Amiloides Familiares/diagnóstico , Marcha , Humanos , Pré-Albumina , Qualidade de Vida
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1546-1549, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440688

RESUMO

Human gait analysis is of utmost importance in understanding several aspects of human movement. In clinical practice, characterizing movement in order to obtain accurate and reliable information is a major challenge, and physicians usually rely on direct observation in order to evaluate a patient's motor abilities. In this contribution, a system that can objectively analyze the patients gait and generate an on the fly, targeted and optimized gait analysis report is presented. It is an extension to an existing system that could be used without interfering with the healthcare environment, which did not provide any on the fly feedback to physicians. Patient data are acquired using Kinect v2, followed by data processing, gait specific feature extraction, ending with the generation of a quantitative on the fly report. To the best of our knowledge, the complete system fills the gap as a proper gait analysis system, i.e., a low-cost tool that can be applied without interfering with the healthcare environment, provide quantitative gait information and on the fly feedback to physicians through a motion quantification report that can be useful in multiple areas.


Assuntos
Marcha , Movimento , Software , Fenômenos Biomecânicos , Humanos
6.
PLoS One ; 13(8): e0201728, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30075023

RESUMO

Human gait analysis provides valuable information regarding the way of walking of a given subject. Low-cost RGB-D cameras, such as the Microsoft Kinect, are able to estimate the 3-D position of several body joints without requiring the use of markers. This 3-D information can be used to perform objective gait analysis in an affordable, portable, and non-intrusive way. In this contribution, we present a system for fully automatic gait analysis using a single RGB-D camera, namely the second version of the Kinect. Our system does not require any manual intervention (except for starting/stopping the data acquisition), since it firstly recognizes whether the subject is walking or not, and identifies the different gait cycles only when walking is detected. For each gait cycle, it then computes several gait parameters, which can provide useful information in various contexts, such as sports, healthcare, and biometric identification. The activity recognition is performed by a predictive model that distinguishes between three activities (walking, standing and marching), and between two postures of the subject (facing the sensor, and facing away from it). The model was built using a multilayer perceptron algorithm and several measures extracted from 3-D joint data, achieving an overall accuracy and F1 score of 98%. For gait cycle detection, we implemented an algorithm that estimates the instants corresponding to left and right heel strikes, relying on the distance between ankles, and the velocity of left and right ankles. The algorithm achieved errors for heel strike instant and stride duration estimation of 15 ± 25 ms and 1 ± 29 ms (walking towards the sensor), and 12 ± 23 ms and 2 ± 24 ms (walking away from the sensor). Our gait cycle detection solution can be used with any other RGB-D camera that provides the 3-D position of the main body joints.


Assuntos
Análise da Marcha/instrumentação , Automação , Fenômenos Biomecânicos , Marcha , Humanos
7.
Stud Health Technol Inform ; 247: 46-50, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29677920

RESUMO

Epilepsy diagnosis is typically performed through 2Dvideo-EEG monitoring, relying on the viewer's subjective interpretation of the patient's movements of interest. Several attempts at quantifying seizure movements have been performed in the past using 2D marker-based approaches, which have several drawbacks for the clinical routine (e.g. occlusions, lack of precision, and discomfort for the patient). These drawbacks are overcome with a 3D markerless approach. Recently, we published the development of a single-bed 3Dvideo-EEG system using a single RGB-D camera (Kinect v1). In this contribution, we describe how we expanded the previous single-bed system to a multi-bed departmental one that has been managing 6.61 Terabytes per day since March 2016. Our unique dataset collected so far includes 2.13 Terabytes of multimedia data, corresponding to 278 3Dvideo-EEG seizures from 111 patients. To the best of the authors' knowledge, this system is unique and has the potential of being spread to multiple EMUs around the world for the benefit of a greater number of patients.


Assuntos
Eletroencefalografia , Epilepsia/diagnóstico , Humanos , Monitorização Fisiológica , Movimento (Física) , Movimento
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1368-1371, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060131

RESUMO

Transthyretin Familial Amyloid Polyneuropathy (TTR-FAP) is a rare neurological disease caused by a genetic mutation with a variable presentation and consequent challenging diagnosis, complex follow-up and treatment. At this moment, this condition has no cure and treatment options are under development. One of the disease's implications is a definite and progressive motor impairment that from the early stages compromises walking ability and daily life activities. The detection of this impairment is key for the disease onset diagnosis. With the goal of improving diagnosis of the symptoms and patients' quality of life, the authors have assessed the gait characteristics of subjects suffering from this condition. This contribution shows the results of a preliminary study, using a non-intrusive, markerless vision-based gait analysis tool. To the best of our knowledge, the reported results constitute the first gait analysis data of TTR-FAP mutation carriers.


Assuntos
Neuropatias Amiloides Familiares , Marcha , Humanos , Mutação , Pré-Albumina , Qualidade de Vida
9.
PLoS One ; 11(1): e0145669, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26799795

RESUMO

Epilepsy is a common neurological disorder which affects 0.5-1% of the world population. Its diagnosis relies both on Electroencephalogram (EEG) findings and characteristic seizure-induced body movements--called seizure semiology. Thus, synchronous EEG and (2D)video recording systems (known as Video-EEG) are the most accurate tools for epilepsy diagnosis. Despite the establishment of several quantitative methods for EEG analysis, seizure semiology is still analyzed by visual inspection, based on epileptologists' subjective interpretation of the movements of interest (MOIs) that occur during recorded seizures. In this contribution, we present NeuroKinect, a low-cost, easy to setup and operate solution for a novel 3Dvideo-EEG system. It is based on a RGB-D sensor (Microsoft Kinect camera) and performs 24/7 monitoring of an Epilepsy Monitoring Unit (EMU) bed. It does not require the attachment of any reflectors or sensors to the patient's body and has a very low maintenance load. To evaluate its performance and usability, we mounted a state-of-the-art 6-camera motion-capture system and our low-cost solution over the same EMU bed. A comparative study of seizure-simulated MOIs showed an average correlation of the resulting 3D motion trajectories of 84.2%. Then, we used our system on the routine of an EMU and collected 9 different seizures where we could perform 3D kinematic analysis of 42 MOIs arising from the temporal (TLE) (n = 19) and extratemporal (ETE) brain regions (n = 23). The obtained results showed that movement displacement and movement extent discriminated both seizure MOI groups with statistically significant levels (mean = 0.15 m vs. 0.44 m, p<0.001; mean = 0.068 m(3) vs. 0.14 m(3), p<0.05, respectively). Furthermore, TLE MOIs were significantly shorter than ETE (mean = 23 seconds vs 35 seconds, p<0.01) and presented higher jerking levels (mean = 345 ms(-3) vs 172 ms(-3), p<0.05). Our newly implemented 3D approach is faster by 87.5% in extracting body motion trajectories when compared to a 2D frame by frame tracking procedure. We conclude that this new approach provides a more comfortable (both for patients and clinical professionals), simpler, faster and lower-cost procedure than previous approaches, therefore providing a reliable tool to quantitatively analyze MOI patterns of epileptic seizures in the routine of EMUs around the world. We hope this study encourages other EMUs to adopt similar approaches so that more quantitative information is used to improve epilepsy diagnosis.


Assuntos
Eletroencefalografia/métodos , Epilepsia/diagnóstico , Gravação em Vídeo/instrumentação , Gravação em Vídeo/métodos , Algoritmos , Eletroencefalografia/economia , Eletroencefalografia/instrumentação , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador , Monitorização Fisiológica/métodos , Movimento (Física) , Gravação em Vídeo/economia
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 2339-2342, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28268795

RESUMO

Many neurological diseases, such as Parkinson's disease and epilepsy, can significantly impair the motor function of the patients, often leading to a dramatic loss of their quality of life. Human motion analysis is regarded as fundamental towards an early diagnosis and enhanced follow-up in this type of diseases. In this contribution, we present NeuroKinect, a novel system designed for motion analysis in neurological diseases. This system includes an RGB-D camera (Microsoft Kinect) and two integrated software applications, KiT (KinecTracker) and KiMA (Kinect Motion Analyzer). The applications enable the preview, acquisition, review and management of data provided by the sensor, which are then used for motion analysis of relevant events. NeuroKinect is a portable, low-cost and markerless solution that is suitable for use in the clinical environment. Furthermore, it is able to provide quantitative support to the clinical assessment of different neurological diseases with movement impairments, as demonstrated by its usage in two different clinical routine scenarios: gait analysis in Parkinson's disease and seizure semiology analysis in epilepsy.


Assuntos
Processamento de Imagem Assistida por Computador , Movimento (Física) , Doença de Parkinson , Software , Humanos , Movimento , Fotografação , Qualidade de Vida
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 1279-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26736501

RESUMO

Human motion analysis can provide valuable information for supporting the clinical assessment of movement disorders, such as Parkinson's disease (PD). In this contribution, we study the suitability of a Kinect v2 based system for supporting PD assessment in a clinical environment, in comparison to the original Kinect (v1). In this study, 3-D body joint data were acquired from both normal subjects, and PD patients treated with deep brain stimulation (DBS). Then, several gait parameters were extracted from the gathered data. The obtained results show that 96% of the considered parameters are appropriate for distinguishing between non-PD subjects, PD patients with DBS stimulator switched on, and PD patients with stimulator switched off (p-value <; 0.001, Kruskal-Wallis test). These results are markedly better than the ones obtained using Kinect v1, where only 73% of the parameters are considered appropriate (p-value <; 0.001).


Assuntos
Doença de Parkinson , Estimulação Encefálica Profunda , Marcha , Humanos , Núcleo Subtalâmico
12.
Artigo em Inglês | MEDLINE | ID: mdl-25570653

RESUMO

Movement-related diseases, such as Parkinson's disease (PD), progressively affect the motor function, many times leading to severe motor impairment and dramatic loss of the patients' quality of life. Human motion analysis techniques can be very useful to support clinical assessment of this type of diseases. In this contribution, we present a RGB-D camera (Microsoft Kinect) system and its evaluation for PD assessment. Based on skeleton data extracted from the gait of three PD patients treated with deep brain stimulation and three control subjects, several gait parameters were computed and analyzed, with the aim of discriminating between non-PD and PD subjects, as well as between two PD states (stimulator ON and OFF). We verified that among the several quantitative gait parameters, the variance of the center shoulder velocity presented the highest discriminative power to distinguish between non-PD, PD ON and PD OFF states (p = 0.004). Furthermore, we have shown that our low-cost portable system can be easily mounted in any hospital environment for evaluating patients' gait. These results demonstrate the potential of using a RGB-D camera as a PD assessment tool.


Assuntos
Marcha/fisiologia , Doença de Parkinson/fisiopatologia , Fotografação/instrumentação , Estimulação Encefálica Profunda , Feminino , Humanos , Articulações/fisiopatologia , Masculino , Pessoa de Meia-Idade , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...