Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 7(8): 894-912, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25153040

RESUMO

The mitochondrial targeted DNA repair enzyme, 8-oxoguanine DNA glycosylase 1, was previously reported to protect against mitochondrial DNA (mtDNA) damage and ventilator induced lung injury (VILI). In the present study we determined whether mitochondrial targeted endonuclease III (EndoIII) which cleaves oxidized pyrimidines rather than purines from damaged DNA would also protect the lung. Minimal injury from 1 h ventilation at 40 cmH2O peak inflation pressure (PIP) was reversed by EndoIII pretreatment. Moderate lung injury due to ventilation for 2 h at 40 cmH2O PIP produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio, and marked increases in MIP-2 and IL-6. Oxidative mtDNA damage and decreases in the total tissue glutathione (GSH) and the GSH/GSSH ratio also occurred. All of these indices of injury were attenuated by mitochondrial targeted EndoIII. Massive lung injury caused by 2 h ventilation at 50 cmH2O PIP was not attenuated by EndoIII pretreatment, but all untreated mice died prior to completing the two hour ventilation protocol, whereas all EndoIII-treated mice lived for the duration of ventilation. Thus, mitochondrial targeted DNA repair enzymes were protective against mild and moderate lung damage and they enhanced survival in the most severely injured group.

2.
Am J Physiol Lung Cell Mol Physiol ; 304(4): L287-97, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23241530

RESUMO

This study tested the hypothesis that oxidative mitochondrial-targeted DNA (mtDNA) damage triggered ventilator-induced lung injury (VILI). Control mice and mice infused with a fusion protein targeting the DNA repair enzyme, 8-oxoguanine-DNA glycosylase 1 (OGG1) to mitochondria were mechanically ventilated with a range of peak inflation pressures (PIP) for specified durations. In minimal VILI (1 h at 40 cmH(2)O PIP), lung total extravascular albumin space increased 2.8-fold even though neither lung wet/dry (W/D) weight ratios nor bronchoalveolar lavage (BAL) macrophage inflammatory protein (MIP)-2 or IL-6 failed to differ from nonventilated or low PIP controls. This increase in albumin space was attenuated by OGG1. Moderately severe VILI (2 h at 40 cmH(2)O PIP) produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio and marked increases in BAL MIP-2 and IL-6, accompanied by oxidative mitochondrial DNA damage, as well as decreases in the total tissue glutathione (GSH) and GSH/GSSH ratio compared with nonventilated lungs. All of these injury indices were attenuated in OGG1-treated mice. At the highest level of VILI (2 h at 50 cmH(2)O PIP), OGG1 failed to protect against massive lung edema and BAL cytokines or against depletion of the tissue GSH pool. Interestingly, whereas untreated mice died before completing the 2-h protocol, OGG1-treated mice lived for the duration of observation. Thus mitochondrially targeted OGG1 prevented VILI over a range of ventilation times and pressures and enhanced survival in the most severely injured group. These findings support the concept that oxidative mtDNA damage caused by high PIP triggers induction of acute lung inflammation and injury.


Assuntos
DNA Glicosilases/uso terapêutico , Reparo do DNA/fisiologia , DNA Mitocondrial/efeitos dos fármacos , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Animais , Quimiocina CXCL2/metabolismo , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/fisiologia , Glutationa/metabolismo , Interleucina-6/metabolismo , Estimativa de Kaplan-Meier , Camundongos , Mitocôndrias/enzimologia , Edema Pulmonar/tratamento farmacológico , Edema Pulmonar/etiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/mortalidade
3.
Am J Physiol Lung Cell Mol Physiol ; 301(6): L892-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21890512

RESUMO

In cultured pulmonary artery endothelial cells and other cell types, overexpression of mt-targeted DNA repair enzymes protects against oxidant-induced mitochondrial DNA (mtDNA) damage and cell death. Whether mtDNA integrity governs functional properties of the endothelium in the intact pulmonary circulation is unknown. Accordingly, the present study used isolated, buffer-perfused rat lungs to determine whether fusion proteins targeting 8-oxoguanine DNA glycosylase 1 (Ogg1) or endonuclease III (Endo III) to mitochondria attenuated mtDNA damage and vascular barrier dysfunction evoked by glucose oxidase (GOX)-generated hydrogen peroxide. We found that both Endo III and Ogg1 fusion proteins accumulated in lung cell mitochondria within 30 min of addition to the perfusion medium. Both constructs prevented GOX-induced increases in the vascular filtration coefficient. Although GOX-induced nuclear DNA damage could not be detected, quantitative Southern blot analysis revealed substantial GOX-induced oxidative mtDNA damage that was prevented by pretreatment with both fusion proteins. The Ogg1 construct also reversed preexisting GOX-induced vascular barrier dysfunction and oxidative mtDNA damage. Collectively, these findings support the ideas that mtDNA is a sentinel molecule governing lung vascular barrier responses to oxidant stress in the intact lung and that the mtDNA repair pathway could be a target for pharmacological intervention in oxidant lung injury.


Assuntos
DNA Mitocondrial/genética , Células Endoteliais/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Animais , Fracionamento Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Dano ao DNA , DNA Glicosilases/farmacologia , DNA Glicosilases/fisiologia , Endodesoxirribonucleases/farmacologia , Endodesoxirribonucleases/fisiologia , Células Endoteliais/metabolismo , Endotélio/metabolismo , Glucose Oxidase/química , Glucose Oxidase/farmacologia , Glucose Oxidase/fisiologia , Técnicas In Vitro , Pulmão/citologia , Pulmão/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Permeabilidade , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...