Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076913

RESUMO

1,3-regiospecific lipases are important enzymes that are heavily utilized in the food industries to produce structured triacylglycerols (TAGs). The Rhizopus oryzae lipase (ROL) has recently gained interest because this enzyme possesses high selectivity and catalytic efficiency. However, its low thermostability limits its use towards reactions that work at lower temperature. Most importantly, the enzyme cannot be used for the production of 1,3-dioleoyl-2-palmitoylglycerol (OPO) and 1,3-stearoyl-2-oleoyl-glycerol (SOS) due to the high melting points of the substrates used for the reaction. Despite various engineering efforts used to improve the thermostability of ROL, the enzyme is unable to function at temperatures above 60 °C. Here, we describe the rational design of ROL to identify variants that can retain their activity at temperatures higher than 60 °C. After two rounds of mutagenesis and screening, we were able to identify a mutant ROL_10x that can retain most of its activity at 70 °C. We further demonstrated that this mutant is useful for the synthesis of SOS while minimal product formation was observed with ROL_WT. Our engineered enzyme provides a promising solution for the industrial synthesis of structured lipids at high temperature.


Assuntos
Lipase , Rhizopus oryzae , Glicerol , Lipase/genética , Rhizopus/genética , Triglicerídeos
2.
Sci Rep ; 11(1): 23260, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853385

RESUMO

An overreliance on commercial, kit-based RNA extraction in the molecular diagnoses of infectious disease presents a challenge in the event of supply chain disruptions and can potentially hinder testing capacity in times of need. In this study, we adapted a well-established, robust TRIzol-based RNA extraction protocol into a high-throughput format through miniaturization and automation. The workflow was validated by RT-qPCR assay for SARS-CoV-2 detection to illustrate its scalability without interference to downstream diagnostic sensitivity and accuracy. This semi-automated, kit-free approach offers a versatile alternative to prevailing integrated solid-phase RNA extraction proprietary systems, with the added advantage of improved cost-effectiveness for high volume acquisition of quality RNA whether for use in clinical diagnoses or for diverse molecular applications.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Ensaios de Triagem em Larga Escala/métodos , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , COVID-19/virologia , Humanos , Técnicas de Diagnóstico Molecular/métodos , RNA Viral/análise , Curva ROC
3.
Biochemistry ; 57(44): 6326-6335, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30346736

RESUMO

Linear triquinanes are sesquiterpene natural products with hydrocarbon skeletons consisting of three fused five-membered rings. Importantly, several of these compounds exhibit useful anticancer, anti-inflammatory, and antibiotic properties. However, linear triquinanes pose significant challenges to organic synthesis because of the structural and stereochemical complexity of their hydrocarbon skeletons. To illuminate nature's solution to the generation of linear triquinanes, we now describe the crystal structure of Streptomyces clavuligerus cucumene synthase. This sesquiterpene cyclase catalyzes the stereospecific cyclization of farnesyl diphosphate to form a linear triquinane product, (5 S,7 S,10 R,11 S)-cucumene. Specifically, we report the structure of the wild-type enzyme at 3.05 Å resolution and the structure of the T181N variant at 1.96 Å resolution, both in the open active site conformations without any bound ligands. The high-resolution structure of T181N cucumene synthase enables inspection of the active site contour, which adopts a three-dimensional shape complementary to a linear triquinane. Several aromatic residues outline the active site contour and are believed to facilitate cation-π interactions that would stabilize carbocation intermediates in catalysis. Thus, aromatic residues in the active site not only define the template for catalysis but also play a role in reducing activation barriers in the multistep cyclization cascade.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carbono-Carbono Liases/química , Carbono-Carbono Liases/metabolismo , Sesquiterpenos/metabolismo , Streptomyces/enzimologia , Catálise , Domínio Catalítico , Cristalografia por Raios X , Liases Intramoleculares/química , Modelos Moleculares , Conformação Proteica
4.
Methods Mol Biol ; 1673: 311-323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29130183

RESUMO

A thermostable quorum-quenching lactonase from Geobacillus kaustophilus (GKL) was used as a template for in vitro directed evolution experiments. Here we describe the overexpression and purification of wild-type GKL, the construction of a quorum-quenching directed evolution platform using bioluminescence as a reporter, and the in vitro kinetic assay for the determination of kinetic parameters of wild-type GKL and its mutants.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Evolução Molecular Direcionada , Geobacillus/enzimologia , Percepção de Quorum , Hidrolases de Éster Carboxílico/isolamento & purificação , Clonagem Molecular , Ensaios Enzimáticos , Genes Bacterianos , Geobacillus/genética , Cinética , Plasmídeos/metabolismo
5.
J Vis Exp ; (107)2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26779961

RESUMO

The rapid emergence of multi-drug resistant bacteria has accelerated the need for novel therapeutic approaches to counter life-threatening infections. The persistence of bacterial infection is often associated with quorum-sensing-mediated biofilm formation. Thus, the disruption of this signaling circuit presents an attractive anti-virulence strategy. Quorum-quenching lactonases have been reported to be effective disrupters of quorum-sensing circuits. However, there have been very few reports of the effective use of these enzymes in disrupting bacterial biofilm formation. This protocol describes a method to disrupt biofilm formation in a clinically relevant A. baumannii S1 strain through the use of an engineered quorum-quenching lactonase. Acinetobacter baumannii is a major human pathogen implicated in serious hospital-acquired infections globally and its virulence is attributed predominantly to its biofilm's tenacity. The engineered lactonase treatment achieved significant A. baumannii S1 biofilm reduction. This study also showed the possibility of using engineered quorum-quenching enzymes in future treatment of biofilm-mediated bacterial diseases. Lastly, the method may be used to evaluate the competency of promising quorum-quenching enzymes.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Hidrolases de Éster Carboxílico/farmacologia , Percepção de Quorum/efeitos dos fármacos , Acinetobacter baumannii/fisiologia , Virulência
6.
Proc Natl Acad Sci U S A ; 112(18): 5661-6, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25901324

RESUMO

Terpenoids are a large structurally diverse group of natural products with an array of functions in their hosts. The large amount of genomic information from recent sequencing efforts provides opportunities and challenges for the functional assignment of terpene synthases that construct the carbon skeletons of these compounds. Inferring function from the sequence and/or structure of these enzymes is not trivial because of the large number of possible reaction channels and products. We tackle this problem by developing an algorithm to enumerate possible carbocations derived from the farnesyl cation, the first reactive intermediate of the substrate, and evaluating their steric and electrostatic compatibility with the active site. The homology model of a putative pentalenene synthase (Uniprot: B5GLM7) from Streptomyces clavuligerus was used in an automated computational workflow for product prediction. Surprisingly, the workflow predicted a linear triquinane scaffold as the top product skeleton for B5GLM7. Biochemical characterization of B5GLM7 reveals the major product as (5S,7S,10R,11S)-cucumene, a sesquiterpene with a linear triquinane scaffold. To our knowledge, this is the first documentation of a terpene synthase involved in the synthesis of a linear triquinane. The success of our prediction for B5GLM7 suggests that this approach can be used to facilitate the functional assignment of novel terpene synthases.


Assuntos
Alquil e Aril Transferases/química , Streptomyces/enzimologia , Algoritmos , Carbono/química , Domínio Catalítico , Cátions , Análise por Conglomerados , Biologia Computacional , Simulação por Computador , Estrutura Terciária de Proteína , Software , Relação Estrutura-Atividade
7.
PLoS Comput Biol ; 10(10): e1003874, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25299649

RESUMO

Terpenoid synthases construct the carbon skeletons of tens of thousands of natural products. To predict functions and specificity of triterpenoid synthases, a mechanism-based, multi-intermediate docking approach is proposed. In addition to enzyme function prediction, other potential applications of the current approach, such as enzyme mechanistic studies and enzyme redesign by mutagenesis, are discussed.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Simulação de Acoplamento Molecular , Terpenos/química , Terpenos/metabolismo , Biologia Computacional , Liases Intramoleculares , Transferases Intramoleculares , Engenharia de Proteínas
8.
Antimicrob Agents Chemother ; 58(3): 1802-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24379199

RESUMO

Acinetobacter baumannii is a major human pathogen associated with multidrug-resistant nosocomial infections; its virulence is attributed to quorum-sensing-mediated biofilm formation, and disruption of biofilm formation is an attractive antivirulence strategy. Here, we report the first successful demonstration of biofilm disruption in a clinical isolate of A. baumannii S1, using a quorum-quenching lactonase obtained by directed evolution; this engineered lactonase significantly reduced the biomass of A. baumannii-associated biofilms, demonstrating the utility of this antivirulence strategy.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Hidrolases de Éster Carboxílico/farmacologia , Percepção de Quorum/efeitos dos fármacos , Hidrolases de Éster Carboxílico/metabolismo , Evolução Molecular Direcionada/métodos , Testes de Sensibilidade Microbiana , Microscopia Confocal
9.
Biochemistry ; 52(13): 2359-70, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23461395

RESUMO

The in vitro evolution and engineering of quorum-quenching lactonases with enhanced reactivities was achieved using a thermostable GKL enzyme as a template, yielding the E101G/R230C GKL mutant with increased catalytic activity and a broadened substrate range [Chow, J. Y., Xue, B., Lee, K. H., Tung, A., Wu, L., Robinson, R. C., and Yew, W. S. (2010) J. Biol. Chem. 285, 40911-40920]. This enzyme possesses the (ß/α)8-barrel fold and is a member of the PLL (phosphotriesterase-like lactonase) group of enzymes within the amidohydrolase superfamily that hydrolyze N-acyl-homoserine lactones, which mediate the quorum-sensing pathways of bacteria. The structure of the evolved N-butyryl-l-homoserine lactone (substrate)-bound E101G/R230C GKL enzyme was determined, in the presence of the inactivating D266N mutation, to a resolution of 2.2 Å to provide an explanation for the observed rate enhancements. In addition, the substrate-bound structure of the catalytically inactive E101N/D266N mutant of the manganese-reconstituted enzyme was determined to a resolution of 2.1 Å and the structure of the ligand-free, manganese-reconstituted E101N mutant to a resolution of 2.6 Å, and the structures of ligand-free zinc-reconstituted wild-type, E101N, R230D, and E101G/R230C mutants of GKL were determined to resolutions of 2.1, 2.1, 1.9, and 2.0 Å, respectively. In particular, the structure of the evolved E101G/R230C mutant of GKL provides evidence of a catalytically productive active site architecture that contributes to the observed enhancement of catalysis. At high concentrations, wild-type and mutant GKL enzymes are differentially colored, with absorbance maxima in the range of 512-553 nm. The structures of the wild-type and mutant GKL provide a tractable link between the origins of the coloration and the charge-transfer complex between the α-cation and Tyr99 within the enzyme active site. Taken together, this study provides evidence of the modulability of enzymatic catalysis through subtle changes in enzyme active site architecture.


Assuntos
4-Butirolactona/análogos & derivados , Amidoidrolases/química , Amidoidrolases/metabolismo , Geobacillus/enzimologia , Percepção de Quorum , 4-Butirolactona/metabolismo , Acil-Butirolactonas/metabolismo , Amidoidrolases/genética , Domínio Catalítico , Cristalografia por Raios X , Geobacillus/química , Geobacillus/genética , Geobacillus/metabolismo , Manganês/metabolismo , Modelos Moleculares , Mutação
10.
Biochemistry ; 51(22): 4568-79, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22587726

RESUMO

Polyketides are chemically diverse and medicinally important biochemicals that are biosynthesized from acyl-CoA precursors by polyketide synthases. One of the limitations to combinatorial biosynthesis of polyketides has been the lack of a toolkit that describes the means of delivering novel acyl-CoA precursors necessary for polyketide biosynthesis. Using five acid-CoA ligases obtained from various plants and microorganisms, we biosynthesized an initial library of 79 acyl-CoA thioesters by screening each of the acid-CoA ligases against a library of 123 carboxylic acids. The library of acyl-CoA thioesters includes derivatives of cinnamyl-CoA, 3-phenylpropanoyl-CoA, benzoyl-CoA, phenylacetyl-CoA, malonyl-CoA, saturated and unsaturated aliphatic CoA thioesters, and bicyclic aromatic CoA thioesters. In our search for the biosynthetic routes of novel acyl-CoA precursors, we discovered two previously unreported malonyl-CoA derivatives (3-thiophenemalonyl-CoA and phenylmalonyl-CoA) that cannot be produced by canonical malonyl-CoA synthetases. This report highlights the utility and importance of determining substrate promiscuities beyond conventional substrate pools and describes novel enzymatic routes for the establishment of precursor-directed combinatorial polyketide biosynthesis.


Assuntos
Acil Coenzima A/metabolismo , Bactérias/enzimologia , Coenzima A Ligases/metabolismo , Plantas/enzimologia , Policetídeos/metabolismo , Acil Coenzima A/química , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Clonagem Molecular , Coenzima A Ligases/genética , Coenzima A Ligases/isolamento & purificação , Ésteres/química , Ésteres/metabolismo , Modelos Moleculares , Oryza/enzimologia , Oryza/genética , Plantas/genética , Policetídeo Sintases/genética , Policetídeo Sintases/isolamento & purificação , Policetídeo Sintases/metabolismo , Policetídeos/química , Rhizobium/enzimologia , Rhizobium/genética , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/genética , Especificidade por Substrato
11.
J Biol Chem ; 285(52): 40911-20, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20980257

RESUMO

A thermostable quorum-quenching lactonase from Geobacillus kaustophilus HTA426 (GI: 56420041) was used as an initial template for in vitro directed evolution experiments. This enzyme belongs to the phosphotriesterase-like lactonase (PLL) group of enzymes within the amidohydrolase superfamily that hydrolyze N-acylhomoserine lactones (AHLs) that are involved in virulence pathways of quorum-sensing pathogenic bacteria. Here we have determined the N-butyryl-L-homoserine lactone-liganded structure of the catalytically inactive D266N mutant of this enzyme to a resolution of 1.6 Å. Using a tunable, bioluminescence-based quorum-quenching molecular circuit, the catalytic efficiency was enhanced, and the AHL substrate range increased through two point mutations on the loops at the C-terminal ends of the third and seventh ß-strands. This E101N/R230I mutant had an increased value of k(cat)/K(m) of 72-fold toward 3-oxo-N-dodecanoyl-L-homoserine lactone. The evolved mutant also exhibited lactonase activity toward N-butyryl-L-homoserine lactone, an AHL that was previously not hydrolyzed by the wild-type enzyme. Both the purified wild-type and mutant enzymes contain a mixture of zinc and iron and are colored purple and brown, respectively, at high concentrations. The origin of this coloration is suggested to be because of a charge transfer complex involving the ß-cation and Tyr-99 within the enzyme active site. Modulation of the charge transfer complex alters the lactonase activity of the mutant enzymes and is reflected in enzyme coloration changes. We attribute the observed enhancement in catalytic reactivity of the evolved enzyme to favorable modulations of the active site architecture toward productive geometries required for chemical catalysis.


Assuntos
Amidoidrolases/química , Evolução Molecular Direcionada , Geobacillus/enzimologia , Percepção de Quorum/fisiologia , Amidoidrolases/genética , Amidoidrolases/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias , Domínio Catalítico , Estabilidade Enzimática/genética , Geobacillus/genética , Temperatura Alta , Ferro/química , Ferro/metabolismo , Lactonas/química , Lactonas/metabolismo , Família Multigênica/fisiologia , Mutação de Sentido Incorreto , Zinco/química , Zinco/metabolismo
12.
Biochemistry ; 48(20): 4344-53, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19374350

RESUMO

The PLL(PTE-like lactonase)-group of enzymes within the amidohydrolase superfamily hydrolyze N-acyl-homoserine lactones (AHLs) that are involved in bacterial quorum-sensing pathways. These enzymes possess the (beta/alpha)(8)-barrel fold and serve as attractive templates for in vitro evolution and engineering of quorum-quenching biological molecules that can serve as antivirulence therapeutic agents. Using a quorum-quenching lactonase from Mycobacterium avium subsp. paratuberculosis K-10 (GI: 41409766) as the initial template for in vitro evolution experiments, we enhanced the catalytic efficiency and increased the substrate range of the wild-type enzyme through a single point mutation on the loop at the C-terminal end of the eighth beta-strand. This N266Y mutant had an increased value of k(cat)/K(M) of 30- and 32-fold toward 3-oxo-N-octanoyl-l-homoserine lactone and N-hexanoyl-l-homoserine lactone, respectively; the evolved mutant also exhibited lactonase activity toward 3-oxo-N-hexanoyl-l-homoserine lactone and N-butyryl-l-homoserine lactone, AHLs that were previously not hydrolyzed by the wild-type enzyme. This article reinforces the evolutionary potential of the (beta/alpha)(8)-barrel fold and highlights the possibility of using quorum-quenching lactonases in the amidohydrolase superfamily as templates for engineering biomolecules of therapeutic use.


Assuntos
Aminoidrolases/metabolismo , Lactonas/química , Mycobacterium avium/metabolismo , Percepção de Quorum/genética , Sequência de Aminoácidos , Bioensaio , Clonagem Molecular , Escherichia coli/metabolismo , Evolução Molecular , Biblioteca Gênica , Cinética , Metais/química , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium avium/genética , Homologia de Sequência de Aminoácidos
13.
Mol Biol Cell ; 19(9): 3676-90, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18562696

RESUMO

Cytokinesis in all organisms involves the creation of membranous barriers that demarcate individual daughter cells. In fission yeast, a signaling module termed the septation initiation network (SIN) plays an essential role in the assembly of new membranes and cell wall during cytokinesis. In this study, we have characterized Slk1p, a protein-kinase related to the SIN component Sid2p. Slk1p is expressed specifically during meiosis and localizes to the spindle pole bodies (SPBs) during meiosis I and II in a SIN-dependent manner. Slk1p also localizes to the forespore membrane during sporulation. Cells lacking Slk1p display defects associated with sporulation, leading frequently to the formation of asci with smaller and/or fewer spores. The ability of slk1 Delta cells to sporulate, albeit inefficiently, is fully abolished upon compromise of function of Sid2p, suggesting that Slk1p and Sid2p play overlapping roles in sporulation. Interestingly, increased expression of the syntaxin Psy1p rescues the sporulation defect of sid2-250 slk1 Delta. Thus, it is likely that Slk1p and Sid2p play a role in forespore membrane assembly by facilitating recruitment of components of the secretory apparatus, such as Psy1p, to allow membrane expansion. These studies thereby provide a novel link between the SIN and vesicle trafficking during cytokinesis.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Meiose , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/fisiologia , Sequência de Aminoácidos , Membrana Celular/metabolismo , Citocinese , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Qa-SNARE/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...