Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 654: 123960, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38447778

RESUMO

Multidrug-resistant tuberculosis (MDR-TB) has posed a serious threat to global public health, and antimicrobial peptides (AMPs) have emerged to be promising candidates to tackle this deadly infectious disease. Previous study has suggested that two AMPs, namely D-LAK120-A and D-LAK120-HP13, can potentiate the effect of isoniazid (INH) against mycobacteria. In this study, the strategy of combining INH and D-LAK peptide as a dry powder formulation for inhalation was explored. The antibacterial effect of INH and D-LAK combination was first evaluated on three MDR clinical isolates of Mycobacteria tuberculosis (Mtb). The minimum inhibitory concentrations (MICs) and fractional inhibitory concentration indexes (FICIs) were determined. The combination was synergistic against Mtb with FICIs ranged from 0.25 to 0.38. The INH and D-LAK peptide at 2:1 mole ratio (equivalent to 1: 10 mass ratio) was identified to be optimal. This ratio was adopted for the preparation of dry powder formulation for pulmonary delivery, with mannitol used as bulking excipient. Spherical particles with mass median aerodynamic diameter (MMAD) of around 5 µm were produced by spray drying. The aerosol performance of the spray dried powder was moderate, as evaluated by the Next Generation Impactor (NGI), with emitted fraction and fine particle fraction of above 70 % and 45 %, respectively. The circular dichroism spectra revealed that both D-LAK peptides retained their secondary structure after spray drying, and the antibacterial effect of the combination against the MDR Mtb clinical isolates was successfully preserved. The combination was found to be effective against MDR Mtb isolates with KatG or InhA mutations. Overall, the synergistic combination of INH with D-LAK peptide formulated as inhaled dry powder offers a new therapeutic approach against MDR-TB.


Assuntos
Isoniazida , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Isoniazida/farmacologia , Pós/química , Peptídeos Antimicrobianos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Aerossóis/química , Administração por Inalação , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Inaladores de Pó Seco , Tamanho da Partícula
2.
Int J Pharm ; 653: 123877, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38342326

RESUMO

Conventional intravenous chemotherapy for lung cancer frequently results in inefficient drug penetration into primary lung tumors and severe systemic toxicities. This study reports the development of inhalable paclitaxel (PTX) nanoagglomerate dry powders (PTX-NADP) for enhanced pulmonary delivery of PTX chemotherapy to lung tumors using full factorial Design of Experiments. PTX nanoparticles were fabricated by flash nanoprecipitation with the aid of N-polyvinylpyrrolidone (PVP) and curcumin (CUR) as stabilizer and co-stabilizer respectively, and subsequently agglomerated into inhalable dry powders via co-spray drying with methylcellulose. The optimized PTX-NADP formulation exhibited acceptable aqueous redispersibility (redispersibility index = 1.17 ± 0.02) into âˆ¼ 150 nm nanoparticles and superb in vitro aerosol performance [mass median aerodynamic diameter (MMAD) = 1.69 ± 0.05 µm and fine particle fraction (FPF) of 70.89 ± 1.72 %] when dispersed from a Breezhaler® at 90 L/min. Notably, adequate aerosolization (MMAD < 3.5 µm and FPF > 40 %) of the optimized formulation was maintained when dispersed at reduced inspiratory flow rates of 30 - 60 L/min. Redispersed PTX nanoparticles from PTX-NADP demonstrated enhanced in vitro antitumor efficacy and cellular uptake in A549 lung adenocarcinoma cells without compromising tolerability of BEAS-2B normal lung epithelial cells towards PTX chemotherapy. These findings highlight the potential of inhaled PTX-NADP therapy to improve therapeutic outcomes for lung cancer patients with varying levels of pulmonary function impairment.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Paclitaxel , Pós , Administração por Inalação , NADP/uso terapêutico , Aerossóis e Gotículas Respiratórios , Tamanho da Partícula , Inaladores de Pó Seco
3.
Int J Pharm ; 653: 123896, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38346602

RESUMO

The therapeutic potential of pharmaceutical cocrystals in intranasal applications remains largely unexplored despite progressive advancements in cocrystal research. We present the application of spray freeze drying (SFD) in successful fabrication of a favipiravir-pyridinecarboxamide cocrystal nasal powder formulation for potential treatment of broad-spectrum antiviral infections. Preliminary screening via mechanochemistry revealed that favipiravir (FAV) can cocrystallize with isonicotinamide (INA), but not nicotinamide (NCT) and picolinamide (PIC) notwithstanding their structural similarity. The cocrystal formation was characterized by differential scanning calorimetry, Fourier-transform infrared spectroscopy, and unit cell determination through Rietveld refinement of powder X-ray analysis. FAV-INA crystalized in a monoclinic space group P21/c with a unit cell volume of 1223.54(3) Å3, accommodating one FAV molecule and one INA molecule in the asymmetric unit. The cocrystal was further reproduced as intranasal dry powders by SFD, of which the morphology, particle size, in vitro drug release, and nasal deposition were assessed. The non-porous flake shaped FAV-INA powders exhibited a mean particle size of 19.79 ± 2.61 µm, rendering its suitability for intranasal delivery. Compared with raw FAV, FAV-INA displayed a 3-fold higher cumulative fraction of drug permeated in Franz diffusion cells at 45 min (p = 0.001). Dose fraction of FAV-INA deposited in the nasal fraction of a customized 3D-printed nasal cast reached over 80 %, whereas the fine particle fraction remained below 6 % at a flow rate of 15 L/min, suggesting high nasal deposition whilst minimal lung deposition. FAV-INA was safe in RPMI 2650 nasal and SH-SY5Y neuroblastoma cells without any in vitro cytotoxicity observed. This study demonstrated that combining the merits of cocrystallization and particle engineering via SFD can propel the development of advanced dry powder formulations for intranasal drug delivery.


Assuntos
Amidas , Química Farmacêutica , Neuroblastoma , Pirazinas , Humanos , Química Farmacêutica/métodos , Pós/química , Liofilização/métodos , Tamanho da Partícula , Inaladores de Pó Seco , Administração por Inalação , Aerossóis
4.
Artigo em Inglês | MEDLINE | ID: mdl-38231385

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) has become a leading causative pathogen of nosocomial pneumonia with an alarming in-hospital mortality rate of 30%. Last resort antibiotic, vancomycin, has been increasingly used to treat MRSA infections, but the rapid emergence of vancomycin-resistant strains urges the development of alternative treatment strategies against MRSA-associated pneumonia. The bacteriolytic enzyme, lysostaphin, targeting the cell wall peptidoglycan of S. aureus, has been considered as a promising alternative for MRSA infections. Its proteinaceous nature is likely benefit from direct delivery to the lungs, but the challenges for successful pulmonary delivery of lysostaphin lying on a suitable inhalation device and a formulation with sufficient storage stability. In this study, the applicability of a vibrating mesh nebulizer (Aerogen Solo®) and a soft mist inhaler (Respimat®) was investigated. Both devices were capable of aerosolizing lysostaphin solution into inhalable droplets and caused minimum antibacterial activity loss. In addition, lysostaphin stabilized with phosphate-buffered saline and 0.1% Tween 80 was proved to have acceptable stability for at least 12 months when stored at 4 °C. These promising data encourage further clinical development of lysostaphin for management of MRSA-associated lung infections.

5.
Int J Pharm ; 644: 123303, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37579825

RESUMO

While inhalable nanoparticle-based dry powders have demonstrated promising potential as next-generation respiratory medicines, erratic particle redispersibility and poor manufacturing reproducibility remain major hurdles hindering their translation from bench to bedside. We developed a one-step continuous process for fabricating inhalable remdesivir (RDV) nanoagglomerate dry powder formulations by integrating flash nanoprecipitation and spray drying. The nanosuspension formulation was optimized using a three-factor Box-Behnken design with a z-average particle size of 233.3 ± 2.3 nm and < 20% size change within six hours. The optimized inhalable nanoagglomerate dry powder formulation produced by spray drying showed adequate aqueous redispersibility (Sf/Si = 1.20 ± 0.01) and in vitro aerosol performance (mass median aerodynamic diameter of 3.80 ± 0.58 µm and fine particle fraction of 39.85 ± 10.16%). In A549 cells, RDV nanoparticles redispersed from the inhalable nanoagglomerate powders displayed enhanced and accelerated RDV cell uptake and negligible cytotoxicity at therapeutic RDV concentrations. No statistically significant differences were observed in the critical quality attributes of the inhalable nanoagglomerate powders produced from the continuous manufacturing and standalone batch modes. This work demonstrates the feasibility of large-scale continuous manufacturing of inhalable nanoagglomerate dry powder formulations, which pave the way for their clinical translation.


Assuntos
Viroses , Humanos , Pós , Administração por Inalação , Reprodutibilidade dos Testes , Aerossóis , Tamanho da Partícula , Inaladores de Pó Seco
6.
J Pharm Sci ; 112(9): 2371-2384, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37453526

RESUMO

Despite significant research progress in substantiating the therapeutic merits of nanomedicines and the emergence of sophisticated nanotechnologies, the translation of this knowledge into new therapeutic modalities has been sluggish, indicating the need for a more comprehensive understanding of how the unique physicochemical properties of nanoparticles affect their clinical applications. Particle size is a critical quality attribute that impacts the bio-fate of nanoparticles, yet precise knowledge of its effect remains elusive with discrepancies among literature reports. This review aims to address this scientific knowledge gap from a drug development perspective by highlighting potential inadequacies during the evaluation of particle size effects. We begin with a discussion on the major issues in particle size characterization along with the corresponding remedies. The influence of confounding factors on biological effects of particle size, including colloidal stability, polydispersity, and in vitro drug release, are addressed for establishing stronger in vitro-in vivo correlation. Particle size design and tailoring approaches for successful nanoparticulate drug delivery beyond parenteral administration are also illustrated. We believe a holistic understanding of the effect of particle size on bio-fate, combined with consistent nanoparticle manufacturing platforms and tailored characterization techniques, would expedite the translation of nanomedicines into clinical practice.


Assuntos
Nanomedicina , Nanopartículas , Nanomedicina/métodos , Tamanho da Partícula , Pesquisa Translacional Biomédica , Sistemas de Liberação de Medicamentos , Nanotecnologia , Nanopartículas/química
7.
Int J Pharm ; 640: 122983, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37121494

RESUMO

While cocrystal engineering is an emerging formulation strategy to overcome drug delivery challenges, its therapeutic potential in non-oral applications remains not thoroughly explored. We herein report for the first time the successful synthesis of a cocrystal for remdesivir (RDV), an antiviral drug with broad-spectrum activities against RNA viruses. The RDV cocrystal was prepared with salicylic acid (SA) via combined liquid-assisted grinding (LAG) and thermal annealing. Formation of RDV-SA was found to be a thermally activated process, where annealing at high temperature after grinding was a prerequisite to facilitate the cocrystal growth from an amorphous intermediate, rendering it elusive under ambient preparing conditions. Through powder X-ray analysis with Rietveld refinement, the three-dimensional molecular structure of RDV-SA was resolved. The thermally annealed RDV-SA produced by LAG crystalized in a non-centrosymmetric monoclinic space group P21 with a unit cell volume of 1826.53(17) Å3, accommodating one pair of RDV and SA molecules in the asymmetric unit. The cocrystal formation was also characterized by differential scanning calorimetry, solid-state nuclear magnetic resonance, and Fourier-transform infrared spectroscopy. RDV-SA was further developed as inhaled dry powders by spray drying for potential COVID-19 therapy. The optimized RDV-SA dry powders exhibited a mass median aerodynamic diameter of 4.33 ± 0.2 µm and fine particle fraction of 41.39 ± 4.25 %, indicating the suitability for pulmonary delivery. Compared with the raw RDV, RDV-SA displayed a 15.43-fold higher fraction of release in simulated lung fluid at 120 min (p = 0.0003). RDV-SA was safe in A549 cells without any in vitro cytotoxicity observed in the RDV concentration from 0.05 to 10 µM.


Assuntos
COVID-19 , Química Farmacêutica , Humanos , Química Farmacêutica/métodos , Administração por Inalação , Tratamento Farmacológico da COVID-19 , Pulmão , Tamanho da Partícula , Pós/química , Inaladores de Pó Seco
8.
AAPS PharmSciTech ; 24(4): 98, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016029

RESUMO

The emergence of novel respiratory infections (e.g., COVID-19) and expeditious development of nanoparticle-based COVID-19 vaccines have recently reignited considerable interest in designing inhalable nanoparticle-based drug delivery systems as next-generation respiratory therapeutics. Among various available devices in aerosol delivery, dry powder inhalers (DPIs) are preferable for delivery of nanoparticles due to their simplicity of use, high portability, and superior long-term stability. Despite research efforts devoted to developing inhaled nanoparticle-based DPI formulations, no such formulations have been approved to date, implying a research gap between bench and bedside. This review aims to address this gap by highlighting important yet often overlooked issues during pre-clinical development. We start with an overview and update on formulation and particle engineering strategies for fabricating inhalable nanoparticle-based dry powder formulations. An important but neglected aspect in in vitro characterization methodologies for linking the powder performance with their bio-fate is then discussed. Finally, the major challenges and strategies in their clinical translation are highlighted. We anticipate that focused research onto the existing knowledge gaps presented in this review would accelerate clinical applications of inhalable nanoparticle-based dry powders from a far-fetched fantasy to a reality.


Assuntos
COVID-19 , Nanopartículas , Humanos , Pós , Administração por Inalação , Sistemas de Liberação de Medicamentos/métodos , Pesquisa Translacional Biomédica , Vacinas contra COVID-19 , Aerossóis e Gotículas Respiratórios , Inaladores de Pó Seco , Tamanho da Partícula
9.
Pharm Res ; 40(5): 1073-1086, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36869245

RESUMO

INTRODUCTION: The emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) posed a severe challenge to tuberculosis (TB) management. The treatment of MDR-TB involves second-line anti-TB agents, most of which are injectable and highly toxic. Previous metabolomics study of the Mtb membrane revealed that two antimicrobial peptides, D-LAK120-A and D-LAK120-HP13, can potentiate the efficacy of capreomycin against mycobacteria. AIMS: As both capreomycin and peptides are not orally available, this study aimed to formulate combined formulations of capreomycin and D-LAK peptides as inhalable dry powder by spray drying. METHODS AND RESULTS: A total of 16 formulations were prepared with different levels of drug content and capreomycin to peptide ratios. A good production yield of over 60% (w/w) was achieved in most formulations. The co-spray dried particles exhibited spherical shape with a smooth surface and contained low residual moisture of below 2%. Both capreomycin and D-LAK peptides were enriched at the surface of the particles. The aerosol performance of the formulations was evaluated with Next Generation Impactor (NGI) coupled with Breezhaler®. While no significant difference was observed in terms of emitted fraction (EF) and fine particle fraction (FPF) among the different formulations, lowering the flow rate from 90 L/min to 60 L/min could reduce the impaction at the throat and improve the FPF to over 50%. CONCLUSIONS: Overall, this study showed the feasibility of producing co-spray dried formulation of capreomycin and antimicrobial peptides for pulmonary delivery. Future study on their antibacterial effect is warranted.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Capreomicina/química , Capreomicina/uso terapêutico , Pós/química , Peptídeos Antimicrobianos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Aerossóis/química , Peptídeos/farmacologia , Inaladores de Pó Seco/métodos , Tamanho da Partícula , Administração por Inalação
10.
Biomater Adv ; 140: 213074, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35970111

RESUMO

Whilst 10-200 nm polymeric nanoparticles hold enormous medical potential, successful clinical translation remains scarce. There is an inadequate understanding of how these nanoparticles could be fabricated with consistent particle architecture in this size range, as well as their corresponding biological performance. We seek to fill this important knowledge gap by employing Design of Experiment (DoE) to examine critical formulation and processing parameters of cholecalciferol (VitD3)-loaded nanoparticles by flash nanoprecipitation (FNP). Based on the regression analysis of the critical processing parameters, six VitD3 nanoparticle formulations with z-average particle sizes between 40 and 150 nm were successfully developed, possessing essentially the same particle shape and zeta potential. To evaluate the effect of particle size on the in vivo performance, not only VitD3 but also its active metabolites (25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3) were assayed in the biodistribution study. Results indicated that VitD3 nanoparticles with sizes ≤110 nm would achieve higher plasma retention. VitD3 nanoparticles with sizes of 40 nm and 150 nm were superior for lung deposition, while particle size had no major role in the brain uptake of VitD3 nanoparticles. The present study demonstrates the value of DoE for generating size-tunable nanoparticles with controlled particle properties in FNP and offers important insights into the particle size effect of nanoparticles <200 nm on their therapeutic potential.


Assuntos
Colecalciferol , Nanopartículas , Tamanho da Partícula , Polímeros , Distribuição Tecidual
11.
Neural Regen Res ; 17(10): 2157-2165, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35259823

RESUMO

Injuries to the central nervous system (CNS) such as stroke, brain, and spinal cord trauma often result in permanent disabilities because adult CNS neurons only exhibit limited axon regeneration. The brain has a surprising intrinsic capability of recovering itself after injury. However, the hostile extrinsic microenvironment significantly hinders axon regeneration. Recent advances have indicated that the inactivation of intrinsic regenerative pathways plays a pivotal role in the failure of most adult CNS neuronal regeneration. Particularly, substantial evidence has convincingly demonstrated that the mechanistic target of rapamycin (mTOR) signaling is one of the most crucial intrinsic regenerative pathways that drive axonal regeneration and sprouting in various CNS injuries. In this review, we will discuss the recent findings and highlight the critical roles of mTOR pathway in axon regeneration in different types of CNS injury. Importantly, we will demonstrate that the reactivation of this regenerative pathway can be achieved by blocking the key mTOR signaling components such as phosphatase and tensin homolog (PTEN). Given that multiple mTOR signaling components are endogenous inhibitory factors of this pathway, we will discuss the promising potential of RNA-based therapeutics which are particularly suitable for this purpose, and the fact that they have attracted substantial attention recently after the success of coronavirus disease 2019 vaccination. To specifically tackle the blood-brain barrier issue, we will review the current technology to deliver these RNA therapeutics into the brain with a focus on nanoparticle technology. We will propose the clinical application of these RNA-mediated therapies in combination with the brain-targeted drug delivery approach against mTOR signaling components as an effective and feasible therapeutic strategy aiming to enhance axonal regeneration for functional recovery after CNS injury.

12.
Pharmaceutics ; 14(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35214034

RESUMO

Formulating pharmaceutical cocrystals as inhalable dosage forms represents a unique niche in effective management of respiratory infections. Favipiravir, a broad-spectrum antiviral drug with potential pharmacological activity against SARS-CoV-2, exhibits a low aqueous solubility. An ultra-high oral dose is essential, causing low patient compliance. This study reports a Quality-by-Design (QbD)-guided development of a carrier-free inhalable dry powder formulation containing a 1:1 favipiravir-theophylline (FAV-THP) cocrystal via spray drying, which may provide an alternative treatment strategy for individuals with concomitant influenza infections and chronic obstructive pulmonary disease/asthma. The cocrystal formation was confirmed by single crystal X-ray diffraction, powder X-ray diffraction, and the construction of a temperature-composition phase diagram. A three-factor, two-level, full factorial design was employed to produce the optimized formulation and study the impact of critical processing parameters on the resulting median mass aerodynamic diameter (MMAD), fine particle fraction (FPF), and crystallinity of the spray-dried FAV-THP cocrystal. In general, a lower solute concentration and feed pump rate resulted in a smaller MMAD with a higher FPF. The optimized formulation (F1) demonstrated an MMAD of 2.93 µm and an FPF of 79.3%, suitable for deep lung delivery with no in vitro cytotoxicity observed in A549 cells.

13.
Pharmaceutics ; 13(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34959440

RESUMO

Active pharmaceutical ingredients (APIs) extracted and isolated from traditional Chinese medicines (TCMs) are of interest for drug development due to their wide range of biological activities. However, the overwhelming majority of APIs in TCMs (T-APIs), including flavonoids, terpenoids, alkaloids and phenolic acids, are limited by their poor physicochemical and biopharmaceutical properties, such as solubility, dissolution performance, stability and tabletability for drug development. Cocrystallization of these T-APIs with coformers offers unique advantages to modulate physicochemical properties of these drugs without compromising the therapeutic benefits by non-covalent interactions. This review provides a comprehensive overview of current challenges, applications, and future directions of T-API cocrystals, including cocrystal designs, preparation methods, modifications and corresponding mechanisms of physicochemical and biopharmaceutical properties. Moreover, a variety of studies are presented to elucidate the relationship between the crystal structures of cocrystals and their resulting properties, along with the underlying mechanism for such changes. It is believed that a comprehensive understanding of cocrystal engineering could contribute to the development of more bioactive natural compounds into new drugs.

14.
Int J Pharm ; 610: 121239, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742828

RESUMO

The present study aimed to investigate how cocrystal solution-state stability may affect the polymorphic drug formation and transition during dissolution. In this work, curcumin-resorcinol (CUR-RES), curcumin-hydroquinone (CUR-HYQ) and curcumin-phloroglucinol (CUR-PHL) cocrystals were employed for dissolution studies in three buffer systems to study the effects of solvent and cocrystal thermodynamic stability. The undissolved solids were collected at designed time points and characterized by powder X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. In pH 1.2 buffer, three cocrystals generated > 94% of metastable CUR form III with trace amount of stable CUR form I, while the phase purity of CUR form III recrystallized from buffers containing ethanol (EtOH) were decreased dramatically. For the same cocrystal, the cocrystal form maintained longer in the pH 1.2 buffer when compared with buffers containing EtOH. The phase purity of recrystallized CUR form III in the metastable cocrystal systems followed a linear relationship against CUR solubility, while the thermodynamically stable cocrystal resulted in a non-linear relationship. Due to different intermolecular interactions analyzed by 1H NMR, the stable cocrystal required a higher supersaturation level to precipitate pure CUR form III, in comparison to two metastable cocrystals. Our study offers important insights into mitigating the risk of recrystallization of drug polymorphs during cocrystal dissolution and demonstrates the potential use of cocrystals for drug polymorph preparation, both of which are crucial to the pharmaceutical cocrystal development and reformulation of existing drugs.


Assuntos
Solubilidade , Varredura Diferencial de Calorimetria , Cristalização , Estabilidade de Medicamentos , Pós , Difração de Raios X
15.
J Neurochem ; 159(4): 690-709, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34532857

RESUMO

After a sublethal ischemic preconditioning (IPC) stimulus, the brain has a remarkable capability of acquiring tolerance to subsequent ischemic insult by establishing precautionary self-protective mechanism. Understanding this endogenous mechanism would reveal novel and effective neuroprotective targets for ischemic brain injury. Our previous study has implied that telomerase reverse transcriptase (TERT) is associated with IPC-induced tolerance. Here, we investigated the mechanism of TERT-mediated ischemic tolerance. Preconditioning was modeled by oxygen-glucose deprivation (OGD) and by TERT inhibitor BIBR1532 in primary neurons. We found that ischemic tolerance was conferred by BIBR1532 preconditioning. We used the Cleavage-Under-Targets-And-Tagmentation approach, a recently developed method with superior signal-to-noise ratio, to comprehensively map the genomic binding sites of TERT in primary neurons, and showed that more than 50% of TERT-binding sites were located at the promoter regions. Mechanistically, we demonstrated that under normal conditions TERT physically bound to many previously unknown genomic loci in neurons, whereas BIBR1532 preconditioning significantly altered TERT-chromatin-binding profile. Intriguingly, we found that BIBR1532-preconditioned neurons showed significant up-regulation of promoter binding of TERT to the mitochondrial anti-oxidant genes, which were correlated with their elevated expression. Functional analysis further indicated that BIBR1532-preconditioning significantly reduced ROS levels and enhanced tolerance to severe ischemia-induced mitochondrial oxidative stress in neurons in a TERT-dependent manner. Together, these results demonstrate that BIBR1532 confers neuronal ischemic tolerance through TERT-mediated transcriptional reprogramming for up-regulation of mitochondrial anti-oxidation gene expression, suggesting the translational potential of BIBR1532 as a therapeutic agent for the treatment of cerebral ischemic injury and oxidative stress-induced neurological disorders.


Assuntos
Aminobenzoatos/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Naftalenos/uso terapêutico , Neurônios , Inibidores da Transcriptase Reversa/farmacologia , Telomerase/metabolismo , Animais , Antioxidantes/metabolismo , Sítios de Ligação/genética , Isquemia Encefálica/patologia , Cromatina/metabolismo , Mapeamento Cromossômico , Feminino , Técnicas de Silenciamento de Genes , Glucose/deficiência , Hipóxia , Precondicionamento Isquêmico , Camundongos , Camundongos Endogâmicos C57BL , Neuroproteção , Gravidez , Cultura Primária de Células , Espécies Reativas de Oxigênio , Razão Sinal-Ruído , Telomerase/antagonistas & inibidores , Telomerase/genética , Ativação Transcricional
16.
Int J Pharm ; 598: 120224, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33486028

RESUMO

Ibuprofen (IBP), a common non-steroidal anti-inflammatory drug (NSAID) with a log P of 3.51, has been shown to possess potential benefit in the treatment of Alzheimer's disease. However, the bioavailability of IBP to the brain is poor, which can be linked to its extensive binding to plasma proteins in the blood. This study aimed to evaluate the nanoparticle production of IBP by flash nanoprecipitation (FNP) technology, and to determine whether the nanoparticles prepared by FNP could enhance the delivery of IBP into the brain. Polymeric IBP nanoparticles were prepared with poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) diblock copolymer as stabilizer under optimized conditions using a four-stream multi-inlet vortex mixer (MIVM). The optimized nanoparticles displayed a mean particle size of around 50 nm, polydispersity index of around 0.2, drug loading of up to 30% and physical stability of up to 34 days. In-depth surface characterization using zeta potential measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) showed that the surfaces of these nanoparticles were covered with the hydrophilic PEG groups from the diblock copolymer. In vivo brain uptake study of the IBP nanoparticles indicated that the particles, when coated with polysorbate 80, displayed an enhanced brain uptake. However, the extent of brain uptake enhancement appeared limited, possibly due to a rapid release of IBP from the nanoparticles into the blood stream following intravenous administration.


Assuntos
Ibuprofeno , Nanopartículas , Encéfalo , Tamanho da Partícula , Polietilenoglicóis , Polímeros
17.
Mol Pharm ; 18(2): 506-521, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32501716

RESUMO

Retinal diseases, such as age-related macular degeneration and diabetic retinopathy, are the leading causes of blindness worldwide. The mainstay of treatment for these blinding diseases remains to be surgery, and the available pharmaceutical therapies on the market are limited, partially owing to various biological barriers in hindering the delivery of therapeutics to the retina. The nanoparticulate drug delivery system confers the capability for delivering therapeutics to the specific ocular targets and, hence, potentially revolutionizes the current treatment landscape of retinal diseases. While the research to date indicates the enormous therapeutics potentials of the nanoparticulate delivery systems, the successful translation of these systems from the bench to bedside is challenging and requires a combined understanding of retinal pathology, physiology of the eye, and particle and formulation designs of nanoparticles. To this end, the review begins with an overview of the most prevalent retinal diseases and related pharmacotherapy. Highlights of the current challenges encountered in ocular drug delivery for each administration route are provided, followed by critical appraisal of various nanoparticulate drug delivery systems for the retinal diseases, including their formulation designs, therapeutic merits, limitations, and future direction. It is believed that a greater understanding of the nano-biointeraction in eyes will lead to the development of more sophisticated drug delivery systems for retinal diseases.


Assuntos
Cegueira/prevenção & controle , Nanopartículas/química , Soluções Oftálmicas/administração & dosagem , Doenças Retinianas/tratamento farmacológico , Administração Intravenosa , Administração Oftálmica , Administração Oral , Animais , Cegueira/etiologia , Barreira Hematorretiniana/metabolismo , Corioide/metabolismo , Túnica Conjuntiva/metabolismo , Córnea/metabolismo , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Humanos , Soluções Oftálmicas/farmacocinética , Permeabilidade , Retina/patologia , Doenças Retinianas/complicações , Doenças Retinianas/patologia , Esclera/metabolismo
18.
Pharmaceutics ; 12(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327381

RESUMO

The kinetic entrapment of molecules in an amorphous phase is a common obstacle to cocrystal screening using rapid solvent removal, especially for drugs with a moderate or high glass-forming ability (GFA). The aim of this study was to elucidate the effects of the coformer's GFA and annealing conditions on the nature of amorphous phase transformation to the cocrystal counterpart. Attempts were made to cocrystallize voriconazole (VRC) with four structural analogues, namely fumaric acid (FUM), tartaric acid (TAR), malic acid (MAL), and maleic acid (MAE). The overall GFA of VRC binary systems increased with decreasing glass transition temperatures (Tgs) of these diacids, which appeared as a critical parameter for predicting the cocrystallization propensity such that a high-Tg coformer is more desirable. A new 1:1 VRC-TAR cocrystal was successfully produced via a supercooled-mediated re-cocrystallization process, and characterized by PXRD, DSC, and FTIR. The cocrystal purity against the annealing temperature displayed a bell-shaped curve, with a threshold at 40 °C. The isothermal phase purity improved with annealing and adhered to the Kolmogorov-Johnson-Mehl-Avrami kinetics. The superior dissolution behavior of the VRC-TAR cocrystal could minimize VRC precipitation upon gastric emptying. This study offers a simple but useful guide for efficient cocrystal screening based on the Tg of structurally similar coformers, annealing temperature, and time.

19.
Pharmaceutics ; 12(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759786

RESUMO

The in vitro release study is a critical test to assess the safety, efficacy, and quality of nanoparticle-based drug delivery systems, but there is no compendial or regulatory standard. The variety of testing methods makes direct comparison among different systems difficult. We herein proposed a novel sample and separate (SS) method by combining the United States Pharmacopeia (USP) apparatus II (paddle) with well-validated centrifugal ultrafiltration (CU) technique that efficiently separated the free drug from nanoparticles. Polymeric drug nanoparticles were prepared by using a four-stream multi-inlet vortex mixer with d-α-tocopheryl polyethylene glycol 1000 succinate as a stabilizer. Itraconazole, cholecalciferol, and flurbiprofen were selected to produce three different nanoparticles with particle size <100 nm. By comparing with the dialysis membrane (DM) method and the SS methods using syringe filters, this novel SS + CU technique was considered the most appropriate in terms of the accuracy and repeatability to provide the in vitro release kinetics of nanoparticles. Interestingly, the DM method appeared to misestimate the release kinetics of nanoparticles through separate mechanisms. This work offers a superior analytical technique for studying in vitro drug release from polymeric nanoparticles, which could benefit the future development of in vitro-in vivo correlation of polymeric nanoparticles.

20.
Eur J Pharm Biopharm ; 149: 238-247, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32112895

RESUMO

While nanoparticulate drugs for deep lung delivery hold promise for particular disease treatments, their size-related physical instability and tendency of being exhaled during breathing remain major challenges to their inhaled formulation development. Here we report a viable method for converting drug nanosuspensions into inhalable, stable and redispersible nano-agglomerates through combined in-situ thermal gelation and spray drying. Itraconazole (ITZ) nanosuspensions were prepared by flash nanoprecipitation, and co-spray dried with two different grades of the gel-forming polymer, methylcellulose (MC M20 and MC M450) as protectants. MC M20 was found superior in protecting ITZ nanoparticles against thermal stress (through nanoparticle entrapment within its gel network structure) during spray drying. In terms of redispersibility, an Sf/Si ratio (i.e., ratio of nanoparticle sizes after and before spray drying) of unity (1.02 ± 0.03), reflecting full particle size preservation, was achieved by optimizing the suspending medium content and spray drying parameters. Formulation components, nanosuspension concentration and spray drying parameters all showed a significant impact on the aerosol performance of the resulting agglomerates, but an absence of defined trends or correlations. Overall, the MC-protected nano-agglomerates displayed excellent in-vitro aerosol performance with fine particle fractions higher than 50% and mass median aerodynamic diameters within the 2-3 µm range, which are ideal for deep lung delivery.


Assuntos
Antifúngicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Itraconazol/administração & dosagem , Nanopartículas , Administração por Inalação , Aerossóis , Antifúngicos/química , Géis , Itraconazol/química , Pulmão/metabolismo , Metilcelulose/química , Tamanho da Partícula , Suspensões , Tecnologia Farmacêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...