Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 941: 173710, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830423

RESUMO

Legionella is an opportunistic waterborne pathogen that is difficult to eradicate in colonized drinking water pipes. Legionella control is further challenged by aging water infrastructure and lack of evidence-based guidance for building treatment. This study assessed multiple premise water remediation approaches designed to reduce Legionella pneumophila within a residential building located in an aging, urban drinking water system over a two-year period. Samples (n = 745) were collected from hot and cold-water lines and quantified via most probable number culture. Building-level treatment approaches included three single heat shocks, three single chemical shocks, and continuous low-level chemical disinfection in the potable water system. The building was highly colonized with L. pneumophila with 71 % L. pneumophila positivity. Single heat shocks had a statistically significant L. pneumophila reduction one day post treatment but no significant L. pneumophila reduction at one week, two weeks, and four weeks post treatment. The first two chemical shocks resulted in statistically significant L. pneumophila reduction at two days and four weeks post treatment, but there was a significant L. pneumophila increase at four weeks following the third chemical shock. Continuous low-level chemical disinfection resulted in statistically significant L. pneumophila reduction at ten weeks post treatment implementation. This demonstrates that in a building highly colonized with L. pneumophila, sustained remediation is best achieved using continuous low-level chemical treatment.


Assuntos
Água Potável , Microbiologia da Água , Purificação da Água , Água Potável/microbiologia , Purificação da Água/métodos , Desinfecção/métodos , Legionella pneumophila , Abastecimento de Água , Legionella , Recuperação e Remediação Ambiental/métodos
2.
medRxiv ; 2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37502988

RESUMO

Legionella is an opportunistic waterborne pathogen that is difficult to eradicate in colonized drinking water pipes. Legionella control is further challenged by aging water infrastructure and lack of evidence-based guidance for building treatment. This study assessed multiple premise water remediation approaches designed to reduce Legionella pneumophila (Lp) within a residential building located in an aging, urban drinking water system over a two-year period. Samples (n=745) were collected from hot and cold-water lines and quantified via most probable number culture. Building-level treatment approaches included three single heat shocks (HS), three single chemical shocks (CS), and continuous low-level chemical disinfection (CCD) in the potable water system. The building was highly colonized with Lp with 71% Lp positivity. Single HS had a statistically significant Lp reduction one day post treatment but no significant Lp reduction one, two, and four weeks post treatment. The first two CS resulted in statistically significant Lp reduction at two days and four weeks post treatment, but there was a significant Lp increase at four weeks following the third CS. CCD resulted in statistically significant Lp reduction ten weeks post treatment implementation. This demonstrates that in a building highly colonized with Lp, sustained remediation is best achieved using CCD.

3.
Water Res ; 226: 119198, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240713

RESUMO

Widespread contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) has required drinking water producers to quickly adopt practical and efficacious treatments to limit human exposure and deleterious health outcomes. This pilot-scale study comparatively investigated PFAS adsorption behaviors in granular activated carbon (GAC) and two strong-base gel anion exchange resin (AER) columns operated in parallel over a 441-day period to treat contaminated groundwater dominated by short-chain perfluorocarboxylic acids (PFCA). Highly-resolved breakthrough profiles of homologous series of 2-8 CF2 PFCA and perfluorosulfonic acids (PFSA), including ultrashort-chain compounds and branched isomers, were measured to elucidate adsorption trends. Sample ports at intermediate bed depths could predict 50% breakthrough of compounds on an accelerated basis, but lower empty bed contact times led to conservative estimates of initial breakthrough. Homologous PFAS series displayed linear (GAC) and log-linear (AER) relationships between chain-length and breakthrough, independent of initial concentration. AERs generally outperformed GAC on a normalized bed volume basis, and this advantage widened with increasing PFAS chain-length. As designed, all treatments would have short full-scale service times (≤142 days for GAC; ≤61 days for AERs) before initial breakthrough of short-chain (2-4 CF2) PFCA. However, AER displayed far longer breakthrough times for PFSA compared to GAC (>3× treatment time), and breakthrough was not observed for PFSA with >4 CF2 in AERs. GAC had a finite molar adsorption capacity for total PFAS, leading to a stoichiometric replacement of short-chain PFCA by PFSA and longer-chain PFCA over time. AERs quickly reached a finite adsorption capacity for PFCA, but they showed substantially greater selectivity for PFSA whose capacity was not reached within the duration of the pilot. Breakthrough characteristics of keto- and unsaturated-PFSA, identified in the groundwater by suspect screening, were also evaluated in absence of reference standards. Modified PFAS structures (branched, keto-, unsaturated-) broke through faster than linear and unmodified perfluorinated structures with equal degrees of fluorination, and the effects were more pronounced in GAC compared to AERs. The results highlight that the design of robust PFAS treatment systems should consider facets beyond current PFAS targets including operational complexities and impacts of unregulated and unmonitored co-contaminants.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Humanos , Carvão Vegetal/química , Resinas de Troca Aniônica/química , Adsorção , Fluorocarbonos/análise , Purificação da Água/métodos , Poluentes Químicos da Água/análise
4.
Water Res ; 201: 117292, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34118648

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are compounds of emerging concern due to their persistence in the global water cycle and detection in drinking water sources. However, PFAS have been poorly studied in bottled water, especially in the United States. This study investigated the occurrence of PFAS and related factors in 101 uniquely labelled bottled water products for sale in the U.S. Products were screened for 32 target PFAS by solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS). Fifteen of 32 measured analytes were detected, consisting primarily of C3-C10 perfluorocarboxylic acids (PFCA) and C3-C6 and C8 perfluorosulfonic acids (PFSA). PFAS were detected above method detection limits in 39/101 tested products. The Σ32PFAS concentrations detected were 0.17-18.87 ng/L with a median of 0.98 ng/L; 97% of samples were below 5 ng/L. PFCA (83%) and short-chain perfluoroalkyl acids (PFAA) containing 5 or less CF2 groups (67%) were more prevalent on a mass basis than PFSA and longer-chain PFAA, respectively. Ultrashort-chain PFPrA, measured for the first time in bottled water, accounted for the greatest individual fraction of detected PFAS mass (42%) and was found almost exclusively in products labeled as Spring water. Purified water products contained significantly less PFAS than Spring water products, which was attributed to the use of reverse osmosis (RO) treatment in the majority of Purified waters (25/35) compared to Spring waters (1/45). RO-treated products contained significantly lower Σ32PFAS, long-chain, short-chain, and PFPrA concentrations than products without RO. Although no enforceable PFAS regulations exist for bottled water in the U.S., the finding that some products approach levels of concern justify a framework for monitoring PFAS in bottled water production.


Assuntos
Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Cromatografia Líquida , Monitoramento Ambiental , Fluorocarbonos/análise , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
5.
J Contam Hydrol ; 231: 103639, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32283437

RESUMO

Halogenated organic solvents such as chlorobenzenes (CBs) are frequent groundwater contaminants due to legacy spills. When contaminated anaerobic groundwater discharges into surface water through wetlands and other transition zones, aeration can occur from various physical and biological processes at shallow depths, resulting in oxic-anoxic interfaces (OAIs). This study investigated the potential for 1,2,4-trichlorobenzene (1,2,4-TCB) biodegradation at OAIs. A novel upflow column system was developed to create stable anaerobic and aerobic zones, simulating a natural groundwater OAI. Two columns containing (1) sand and (2) a mixture of wetland sediment and sand were operated continuously for 295 days with varied doses of 0.14-1.4 mM sodium lactate (NaLac) as a model electron donor. Both column matrices supported anaerobic reductive dechlorination and aerobic degradation of 1,2,4-TCB spatially separated between anaerobic and aerobic zones. Reductive dechlorination produced a mixture of di- and monochlorobenzene daughter products, with estimated zero-order dechlorination rates up to 31.3 µM/h. Aerobic CB degradation, limited by available dissolved oxygen, occurred for 1,2,4-TCB and all dechlorinated daughter products. Initial reductive dechlorination did not enhance the overall observed extent or rate of subsequent aerobic CB degradation. Increasing NaLac dose increased the extent of reductive dechlorination, but suppressed aerobic CB degradation at 1.4 mM NaLac due to increased oxygen demand. 16S-rRNA sequencing of biofilm microbial communities revealed strong stratification of functional anaerobic and aerobic organisms between redox zones including the sole putative reductive dechlorinator detected in the columns, Dehalobacter. The sediment mixture column supported enhanced reductive dechlorination compared to the sand column at all tested NaLac doses and growth of Dehalobacter populations up to 4.1 × 108 copies/g (51% relative abundance), highlighting the potential benefit of sediments in reductive dechlorination processes. Results from these model systems suggest both substantial anaerobic and aerobic CB degradation can co-occur along the OAI at contaminated sites where bioavailable electron donors and oxygen are both present.


Assuntos
Água Subterrânea , Biodegradação Ambiental , Clorobenzenos , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...