Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Radiat Oncol ; 9(3): 101390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38292891

RESUMO

Purpose: The combination of surface-guided radiation therapy (SGRT) and image-guided radiation therapy (IGRT) can provide complementary information of patient positioning throughout treatments. The ExacTrac Dynamic (EXTD) system is a combined SGRT and IGRT system that can provide real-time motion detection via optical surface and thermal tracking during treatment delivery, with stereoscopic x-ray for positional verification. The purpose of this study was to examine the performance of EXTD for intrafractional motion monitoring using real clinical cases. Methods and Materials: Treatment log files exported from EXTD for 40 patients with 335 fractions were retrospectively analyzed. Frequency of beam-hold triggered during treatments were recorded, with the comparison of shifts detected by optical surface tracking (EXTD_Thml) and x-ray verification (EXTD_Xray). Results: Among the 335 fractions, automatic beam-holds were triggered 41 times, followed by x-ray positional verification with internal anatomy. The difference of shifts detected by EXTD_Thml and EXTD_Xray were less than 1 mm and 1° in translational and rotational directions, respectively. After x-ray verification, none of them required the application of positional correction. Conclusions: The availability of x-ray imaging with optical surface tracking in EXTD is essential to verify whether geometric shifts are required to correct patient position. Considering the ability of continuous monitoring of patient positions with optical surface tracking and internal imaging, EXTD is an effective tool for intrafractional motion monitoring during radiation therapy.

2.
J Appl Clin Med Phys ; 23(8): e13698, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35699203

RESUMO

PURPOSE: To evaluate the effect of material assignment in nasal cavity on dose calculation for the volumetric modulated arc therapy (VMAT) of nasopharyngeal carcinoma (NPC) using Acuros XB (AXB) algorithm. METHODS: The VMAT plans of 30 patients with NPC were calculated using AXB with material auto-assignment of nasal cavity to lung and reassignment to air respectively. The doses to the planning target volumes (PTVs) overlapping with nasal cavity with material auto-assignment of lung (AXB_Lung) were compared to the values obtained when nasal cavity was reassigned to air (AXB_Air) under the dose-to-medium (Dm ) reporting mode of AXB. RESULTS: For dose calculated under AXB_Lung, the D98% , D2% , and Dmean of the PTV69.96 _Air Cavity (PTV of prescription dose 69.96 Gy overlapping with nasal cavity) were on average 16.1%, 1.6%, and 8.6% larger than that calculated under AXB_Air, respectively. Up to 19.5% difference in D98% , 3% difference in D2% , and 11.2% difference in Dmean were observed in the worst cases for PTV69.96 . Similar trend was observed for the PTV5940 _Air Cavity, in which the D98% , D2% , and Dmean calculated under AXB_Lung were on average 14.7%, 2.5%, and 10.2% larger than that calculated under AXB_Air, respectively. In the worst cases, the difference observed in D98% , D2% , and Dmean could be up to 17.7%, 4.5%, and 12.7%, respectively. CONCLUSIONS: Significant dose difference calculated by AXB between the material assignment of lung and air in nasal cavity for NPC cases might imply the possibility of underdosage to the PTVs that overlap with inhomogeneity. Therefore, attention should be put to ensure that accurate material assignment for dose calculation under AXB such that optimal dosage was given for tumor control.


Assuntos
Neoplasias Nasofaríngeas , Radioterapia de Intensidade Modulada , Algoritmos , Humanos , Cavidade Nasal , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
3.
J Appl Clin Med Phys ; 23(5): e13567, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35188333

RESUMO

Accurate detection of patient shift is essential during radiation therapy such that optimal dose is delivered to the tumor while minimizing radiation to surrounding normal tissues. The shift detectability of a newly developed optical surface and thermal tracking system, which was known as ExacTrac Dynamic (EXTD), was evaluated by comparing its performance with the image guidance under cone-beam computed tomography (CBCT). Anthropomorphic cranial and pelvis phantoms with internal bone-like structures and external heat pad were utilized to study the shift detection discrepancy between EXTD system and CBCT. Random displacements within the range of ± 2 cm for translations and ± 2 degrees for rotations were intentionally applied to the phantom. Positional shifts detected by optical surface and thermal tracking (EXTD_Thml), stereoscopic X-ray (EXTD_Xray), and CBCT were compared in 6 degrees of freedom. The translational difference between EXTD_Thml and CBCT was 0.57 ± 0.41 mm and 0.66 ± 0.40 mm for cranial and pelvis phantom, respectively, while it was 0.60 ± 0.43 mm and 0.76 ± 0.49 mm between EXTD_Xray and CBCT, respectively. For rotational movement, the difference between EXTD_Thml and CBCT was 0.19 ± 0.16° and 0.19 ± 0.22° for cranial and pelvis phantom, respectively, while it was 0.13 ± 0.18° and 0.65 ± 0.46° between EXTD_Xray and CBCT, respectively. This study demonstrated that the EXTD system with thermal mapping ability could offer comparable accuracy for shift detection with CBCT on both cranial and pelvis phantoms.


Assuntos
Neoplasias , Radiocirurgia , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Imagens de Fantasmas , Radiografia , Radiocirurgia/métodos
4.
J Appl Clin Med Phys ; 21(11): 179-187, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33073897

RESUMO

An in-house trajectory log analysis program (LOGQA) was developed to evaluate the delivery accuracy of volumetric-modulated arc therapy (VMAT) for stereotactic body radiation therapy (SBRT). Methods have been established in LOGQA to provide analysis on dose indices, gantry angles, and multi-leaf collimator (MLC) positions. Between March 2019 and May 2020, 120 VMAT SBRT plans of various treatment sites using flattening filter-free (FFF) mode were evaluated using both LOGQA and phantom measurements. Gantry angles, dose indices, and MLC positions were extracted from log and compared with each plan. Integrated transient fluence map (ITFM) was reconstructed from log to examine the deviation of delivered fluence against the planned one. Average correlation coefficient of dose index versus gantry angle and ITFM for all patients were 1.0000, indicating that the delivered beam parameters were in good agreement with planned values. Maximum deviation of gantry angles and monitor units (MU) of all patients were less than 0.2 degree and 0.03 % respectively. Regarding MLC positions, maximum and root-mean-square (RMS) deviations from planned values were less than 0.6 mm and 0.3 mm respectively, indicating that MLC positions during delivery followed planned values in precise manner. Results of LOGQA were consistent with measurement, where all gamma-index passing rates were larger than 95 %, with 2 %/2 mm criteria. Three types of intentional errors were introduced to patient plan for software validation. LOGQA was found to recognize the introduced errors of MLC positions, gantry angles, and dose indices with magnitudes of 1 mm, 1 degree, and 5 %, respectively, which were masked in phantom measurement. LOGQA was demonstrated to have the potential to reduce or even replace patient-specific QA measurements for SBRT plan delivery provided that the frequency and amount of measurement-based machine-specific QA can be increased to ensure the log files record real values of machine parameters.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...