Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38337985

RESUMO

Chlorophyll (Chl) fluorescence induction (FI) upon a dark-light transition has been widely analyzed to derive information on initial events of energy conversion and electron transfer in photosystem II (PSII). However, currently, there is no analytical solution to the differential equation of QA reduction kinetics, raising a doubt about the fitting of FI by numerical iteration solution. We derived an analytical solution to fit the OJ phase of FI, thereby yielding estimates of three parameters: the functional absorption cross-section of PSII (σPSII), a probability parameter that describes the connectivity among PSII complexes (p), and the rate coefficient for QA- oxidation (kox). We found that σPSII, p, and kox exhibited dynamic changes during the transition from O to J. We postulated that in high excitation light, some other energy dissipation pathways may vastly outcompete against excitation energy transfer from a closed PSII trap to an open PSII, thereby giving the impression that connectivity seemingly does not exist. We also conducted a case study on the urban heat island effect on the heat stability of PSII using our method and showed that higher-temperature-acclimated leaves had a greater σPSII, lower kox, and a tendency of lower p towards more shade-type characteristics.

2.
Physiol Plant ; 175(4): e13981, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616008

RESUMO

Potassium ions enhance photosynthetic tolerance to salt stress. We hypothesized that potassium ions, by minimizing the trans-thylakoid proton diffusion potential difference, can alleviate over-reduction of the photosynthetic electron transport chain and maintain the functionality of the photosynthetic apparatus. This study investigated the effects of exogenous potassium on the transcription level and activity of proteins related to the photosynthetic electron-transport chain of tobacco seedlings under salt stress. Salt stress retarded the growth of seedlings and caused an outflow of potassium ions from the chloroplast. It also lowered qP (indicator of the oxidation state of QA , the primary quinone electron acceptor in Photosystem II (PSII) and YPSII (average photochemical yield of PSII in the light-adapted state) while increasing YNO+NF (nonregulatory energy dissipation in functional and nonfunctional PSII), accompanied by decreased expression of most light-harvesting, energy-transduction, and electron-transport genes. However, exogenous potassium prevented these effects due to NaCl. Interestingly, lincomycin (an inhibitor of the synthesis of chloroplast-encoded proteins in PSII) significantly diminished the alleviation effect of exogenous potassium on salt stress. We attribute the comprehensive NaCl-induced downregulation of transcription and photosynthetic activities to retrograde signaling induced by reactive oxygen species. There probably exist at least two types of retrograde signaling induced by reactive oxygen species, distinguished by their sensitivity to lincomycin. Exogenous potassium appears to exert its primary effect by ameliorating the trans-thylakoid proton diffusion potential difference via a potassium channel, thereby accelerating ATP synthesis and carbon assimilation, alleviating over-reduction of the photosynthetic electron transport chain, and maintaining the functionality of photosynthetic proteins.


Assuntos
Potássio , Prótons , Transporte de Elétrons , Espécies Reativas de Oxigênio , Cloreto de Sódio/farmacologia , Fotossíntese/fisiologia , Estresse Salino , Complexo de Proteína do Fotossistema II/metabolismo , Lincomicina/farmacologia
3.
Plant Cell Physiol ; 64(1): 43-54, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36201365

RESUMO

Non-photochemical quenching (NPQ) has been regarded as a safety valve to dissipate excess absorbed light energy not used for photochemistry. However, there exists no general consensus on the photoprotective role of NPQ. In the present study, we quantified the Photosystem II (PSII) photo-susceptibilities (mpi) in the presence of lincomycin, under red light given to five shade-acclimated tree species grown in the field. Photosynthetic energy partitioning theory was applied to investigate the relationships between mpi and each of the regulatory light-induced NPQ [Y(NPQ)], the quantum yield of the constitutive nonregulatory NPQ [Y(NO)] and the PSII photochemical yield in the light-adapted state [Y(PSII)] under different red irradiances. It was found that in the low to moderate irradiance range (50-800 µmol m-2 s-1) when the fraction of open reaction centers (qP) exceeded 0.4, mpi exhibited no association with Y(NPQ), Y(NO) and Y(PSII) across species. However, when qP < 0.4 (1,500 µmol m-2 s-1), there existed positive relationships between mpi and Y(NPQ) or Y(NO) but a negative relationship between mpi and Y(PSII). It is postulated that both Y(NPQ) and Y(NO) contain protective and damage components and that using only Y(NPQ) or Y(NO) metrics to identify the photo-susceptibility of a species is a risk. It seems that qP regulates the balance of the two components for each of Y(NPQ) and Y(NO). Under strong irradiance, when both protective Y(NPQ) and Y(NO) are saturated/depressed, the forward electron flow [i.e. Y(PSII)] acts as the last defense to resist photoinhibition.


Assuntos
Processos Fotoquímicos , Complexo de Proteína do Fotossistema II , Aclimatação , Luz , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo
4.
Physiol Plant ; 174(6): e13819, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36344438

RESUMO

The quantum yield of photosynthesis (QY, CO2 fixed per light absorbed) depends on the efficiency of light absorption, the coupling between light absorption and electron transport, and the coupling between electron transport and carbon metabolism. QY is generally lower in C3 relative to C4 plants at warm temperatures and differs among the C4 subtypes. We investigated the acclimation to shade of light absorption and electron transport in six representative grasses with C3 , C3 -C4 and C4 photosynthesis. Plants were grown under full (control) or 25% (shade) sunlight. We measured the in vivo activity and stoichiometry of PSI and PSII, leaf spectral properties and pigment contents, and photosynthetic enzyme activities. Under control growth-light conditions, C4 species had higher CO2 assimilation rates, which declined to a greater extent relative to the C3 species. Whole leaf PSII/PSI ratios were highest in the C3 species, while QY and cyclic electron flow (CEF) were highest in the C4 , NADP-ME species. Shade significantly reduced leaf PSII/PSI, linear electron flow (LEF) and CEF of most species. Overall, shade reduced leaf absorptance, especially in the green region, as well as carotenoid and chlorophyll contents in C4 more than non-C4 species. The NAD-ME species underwent the greatest reduction in leaf absorptance and pigments under shade. In conclusion, shade compromised QY the least in the C3 and the most in the C4 -NAD-ME species. Different sensitivity to shade was associated with the ability to maintain leaf absorptance and pigments. This is important for maximising light absorption and minimising photoprotection under low light.


Assuntos
Dióxido de Carbono , Poaceae , Poaceae/metabolismo , Dióxido de Carbono/metabolismo , NAD/metabolismo , Fotossíntese , Folhas de Planta/metabolismo
5.
New Phytol ; 235(2): 446-456, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35451127

RESUMO

Photosystem II (PSII), which splits water molecules at minimal excess photochemical potential, is inevitably photoinactivated during photosynthesis, resulting in compromised photosynthetic efficiency unless it is repaired. The energy cost of PSII repair is currently uncertain, despite attempts to calculate it. We experimentally determined the energy cost of repairing each photoinactivated PSII in cotton (Gossypium hirsutum) leaves, which are capable of repairing PSII in darkness. As an upper limit, 24 000 adenosine triphosphate (ATP) molecules (including any guanosine triphosphate synthesized at the expense of ATP) were required to repair one entire PSII complex. Further, over a 7-h illumination period at 526-1953 µmol photons m-2 s-1 , the ATP requirement for PSII repair was on average up to 4.6% of the ATP required for the gross carbon assimilation. Each of these two measures of ATP requirement for PSII repair is two- to three-fold greater than the respective reported calculated value. Possible additional energy sinks in the PSII repair cycle are discussed.


Assuntos
Gossypium , Complexo de Proteína do Fotossistema II , Trifosfato de Adenosina/metabolismo , Clorofila , Gossypium/metabolismo , Luz , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo
6.
Funct Plant Biol ; 49(6): 463-482, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705686

RESUMO

Induction of non-photochemical quenching (NPQ) of chlorophyll fluorescence in leaves affords photoprotection to the photosynthetic apparatus when, for whatever reason, photon capture in the antennae of photosystems exceeds their capacity to utilise this excitation in photochemistry and ultimately in CO2 assimilation. Here we augment traditional monitoring of NPQ using the fast time resolution, remote and relatively non-intrusive light induced fluorescence transient (LIFT) technique (Kolber et al . 2005 ; Osmond et al . 2017 ) that allows direct measurement of functional (σ'PSII ) and optical cross-sections (a 'PSII ) of PSII in situ , and calculates the half saturation light intensity for ETR (E k ). These parameters are obtained from the saturation and relaxation phases of fluorescence transients elicited by a sequence of 270, high intensity 1 µs flashlets at controlled time intervals over a period of 30 ms in the QA flash at intervals of a few seconds. We report that although σ'PSII undergoes large transient increases after transfer from dark to strong white light (WL) it declines little in steady-state as NPQ is induced in shade- and sun-grown spinach and Arabidopsis genotypes Col , OEpsbs , pgr 5bkg , stn 7 and stn 7/8. In contrast, σ'PSII increases by ~30% when induction of NPQ in spinach is inhibited by dithiothreitol and by inhibition of NPQ in Arabidopsis npq 1, npq 4 and pgr 5. We propose this increase in σ'PSII arises as some excitation from closed PSII reaction centres is transferred to open centres when excitation partitioning to photochemistry (Y II ) and NPQ (Y NP ) declines, and is indicated by an increased excitation dissipation from closed PSII centres (Y NO , including fluorescence emission). Although E k increases following dissipation of excitation as heat when NPQ is engaged, it declines when NPQ is inhibited. Evidently photochemistry becomes more easily light saturated when excitation is transferred from closed RCIIs to open centres with larger σ'PSII . The NPQ mutant pgr 5 is an exception; E k increases markedly in strong light as electron transport QA → PQ and PQ → PSI accelerate and the PQ pool becomes strongly reduced. These novel in situ observations are discussed in the context of contemporary evidence for functional and structural changes in the photosynthetic apparatus during induction of NPQ.


Assuntos
Arabidopsis , Complexo de Proteína do Fotossistema II , Arabidopsis/metabolismo , Transporte de Elétrons , Luz , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo
7.
Photosynth Res ; 149(1-2): 171-185, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33534052

RESUMO

Alternative electron fluxes such as the cyclic electron flux (CEF) around photosystem I (PSI) and Mehler reaction (Me) are essential for efficient photosynthesis because they generate additional ATP and protect both photosystems against photoinhibition. The capacity for Me can be estimated by measuring O2 exchange rate under varying irradiance and CO2 concentration. In this study, mass spectrometric measurements of O2 exchange were made using leaves of representative species of C3 and C4 grasses grown under natural light (control; PAR ~ 800 µmol quanta m-2 s-1) and shade (~ 300 µmol quanta m-2 s-1), and in representative species of gymnosperm, liverwort and fern grown under natural light. For all control grown plants measured at high CO2, O2 uptake rates were similar between the light and dark, and the ratio of Rubisco oxygenation to carboxylation (Vo/Vc) was low, which suggests little potential for Me, and that O2 uptake was mainly due to photorespiration or mitochondrial respiration under these conditions. Low CO2 stimulated O2 uptake in the light, Vo/Vc and Me in all species. The C3 species had similar Vo/Vc, but Me was highest in the grass and lowest in the fern. Among the C4 grasses, shade increased O2 uptake in the light, Vo/Vc and the assimilation quotient (AQ), particularly at low CO2, whilst Me was only substantial at low CO2 where it may contribute 20-50% of maximum electron flow under high light.


Assuntos
Adaptação Ocular/fisiologia , Dióxido de Carbono/metabolismo , Transporte de Elétrons/fisiologia , Oxigênio/metabolismo , Fotossíntese/fisiologia , Luz Solar/efeitos adversos , Produtos Agrícolas/fisiologia , Cycadopsida/fisiologia , Ginkgo biloba/fisiologia , Marchantia/fisiologia , Folhas de Planta/metabolismo , Poaceae/fisiologia , Polypodium/fisiologia , Zea mays/fisiologia
8.
Photosynth Res ; 149(1-2): 5-24, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33543372

RESUMO

Despite my humble beginnings in rural China, I had the good fortune of advancing my career and joining an international community of photosynthesis researchers to work on the 'light reactions' that are a fundamental process in Nature. Along with supervisors, mentors, colleagues, students and lab assistants, I worked on ionic redistributions across the photosynthetic membrane in response to illumination, photophosphorylation, forces that regulate the stacking of photosynthetic membranes, the composition of components of the photosynthetic apparatus during acclimation to the light environment, and the failure of the photosynthetic machinery to acclimate to too much light or even to cope with moderate light due to inevitable photodamage. These fascinating underlying mechanisms were investigated in vitro and in vivo. My career path, with its ups and downs, was never secure, but the reward of knowing a little more of the secret of Nature offset the job uncertainty.


Assuntos
Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Fotossíntese/fisiologia , Pesquisadores/história , Relatório de Pesquisa/história , Adulto , Austrália , Bornéu , Escolha da Profissão , China , Inglaterra , História do Século XX , História do Século XXI , Humanos , Malásia , Masculino , Pessoa de Meia-Idade
9.
Photosynth Res ; 149(1-2): 83-92, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33404974

RESUMO

Light energy causes damage to Photosystem I (PSI) and Photosystem II (PSII). The majority of the previous photoinhibition studies have been conducted with PSII, which shows much larger photoinhibition than PSI; therefore, relatively little is known about the mechanism of PSI photoinhibition so far. A previous report showed that the photoinhibition action spectrum measured with PSI activity of isolated thylakoid is similar to the absorption spectrum of chlorophyll. However, it is known that the extent of PSI photoinhibition is much smaller in vivo compared to in vitro. It is also possible that the different extent of PSII photoinhibition, caused by different spectral light qualities, can affect the photoinhibition of PSI in vivo because PSI receives electrons from PSII. In the present research, to study the effect of light quality and the effect of the extent of PSII photoinhibition on the PSI photoinhibition in vivo, intact leaves were photoinhibited under four different light qualities. The rate coefficient of PSI photoinhibition was significantly higher in blue and red light compared to white light. The rate of PSI photoinhibition at the same photon-exposure was the largest in blue and red light and followed by white and green light. These results support the notion that light absorption by chlorophyll is responsible for the PSI photoinhibition, even in intact leaves. The variation among light colors in the relationships between the extent of photoinhibition of PSII and that of PSI indicate that PSI and PSII are independently photoinhibited with different mechanisms in the early stage of in vivo photoinhibition.


Assuntos
Adaptação Ocular/fisiologia , Capsicum/metabolismo , Clorofila/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Luz Solar/efeitos adversos , Produtos Agrícolas/metabolismo
10.
Photosynth Res ; 147(2): 125-130, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33387193

RESUMO

Robert John Porra (7.8.1931-16.5.2019) is probably best known for his substantial practical contributions to plant physiology and photosynthesis by addressing the problems of both the accurate spectroscopic estimation and the extractability of chlorophylls in many organisms. Physiological data and global productivity estimates, in particular of marine primary productivity, are often quoted on a chlorophyll basis. He also made his impact by work on all stages of tetrapyrrole biosynthesis: he proved the C5 pathway to chlorophylls, detected an alternative route to protoporphyrin in anaerobes and the different origin of the oxygen atoms in anaerobes and aerobes. A brief review of his work is supplemented by personal memories of the authors.


Assuntos
Clorofila/metabolismo , Fotossíntese , Fenômenos Fisiológicos Vegetais , Tetrapirróis/biossíntese , Austrália , Clorofila/história , História do Século XX , História do Século XXI , Humanos , Masculino , Oxigênio/história , Oxigênio/metabolismo , Tetrapirróis/história
11.
Photosynth Res ; 149(1-2): 25-40, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32462454

RESUMO

Anthocyanins are water-soluble pigments in plants known for their photoprotective role against photoinhibitory and photooxidative damage under high light (HL). However, it remains unclear whether light-shielding or antioxidant activity plays a major role in the photoprotection exerted by anthocyanins under HL stress. To shed light on this question, we analyzed the physiological and biochemical responses to HL of three Arabidopsis thaliana lines (Col, chi, ans) with different light absorption and antioxidant characteristics. Under HL, ans had the highest antioxidant capacity, followed by Col, and finally chi; Col had the strongest light attenuation capacity, followed by chi, and finally ans. The line ans had weaker physiological activity of chloroplasts and more severe oxidative damage than chi after HL treatment. Col with highest photoprotection of light absorption capacity had highest resistance to HL among the three lines. The line ans with high antioxidant capacity could not compensate for its disadvantages in HL caused by the absence of the light-shielding function of anthocyanins. In addition, the expression level of the Anthocyanin Synthase (ANS) gene was most upregulated after HL treatment, suggesting that the conversion of colorless into colored anthocyanin precursors was necessary under HL. The contribution of anthocyanins to flavonoids, phenols, and antioxidant capacity increased in the late period of HL, suggesting that plants prefer to synthesize red anthocyanins (a group of colored antioxidants) over other colorless antioxidants to cope with HL. These experimental observations indicate that the light attenuation role of anthocyanins is more important than their antioxidant role in photoprotection.


Assuntos
Adaptação Ocular/fisiologia , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Proteção Radiológica , Luz Solar/efeitos adversos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação , Estresse Oxidativo/fisiologia , Fenótipo , Fotossíntese/fisiologia
12.
Photosynth Res ; 149(1-2): 41-55, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32902777

RESUMO

Increasing amounts of experimental evidence show that anthocyanins provide physiological protection to plants under stress. However, the difference in photoprotection mediated by anthocyanins and other photoprotective substances in different seasons is still uncertain. To determine the relationship between anthocyanin accumulation and the photoprotective effects in different seasons, Castanopsis chinensis and Acmena acuminatissima, whose anthocyanin accumulation patterns differ in different seasons, were used as materials to explain how plants adapt to different seasons; as such, their physiological and biochemical responses were analyzed. Young leaves of C. chinensis and A. acuminatissima presented different colors in the different seasons. In summer, the young leaves of C. chinensis were purplish red, while those of A. acuminatissima were light green. In winter, the young leaves of C. chinensis were light green, while those of A. acuminatissima were red. Compared with the young red leaves, the young light green leaves that did not accumulate anthocyanins had higher flavonoid and phenolics contents, total antioxidant capacity, non-photochemical quenching (NPQ), and relative membrane leakage, and a slower recovery rate in the maximum photochemical efficiency (Fv/Fm) after high-light treatment. In addition, the net photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (gs), and the effective quantum yield of PSII (ΦPSII) of the young leaves in winter were significantly lower than those in summer, while the activities of catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), and superoxide dismutase (SOD, EC 1.15.1.1) were significantly higher than those in summer. These data indicate that to adapt to seasonal changes anthocyanins, other antioxidative substances and antioxidative enzymes, as well as components involved in the safe dissipation of excitation energy as heat need to cooperate with one another.


Assuntos
Adaptação Ocular/fisiologia , Antocianinas/metabolismo , Fagaceae/metabolismo , Myrtaceae/metabolismo , Pigmentação/fisiologia , Folhas de Planta/metabolismo , Estações do Ano , Luz Solar/efeitos adversos , Antioxidantes/metabolismo , China , Fenótipo , Fotossíntese/fisiologia
13.
Photosynth Res ; 149(1-2): 57-68, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32783175

RESUMO

Plants in their natural environment are often exposed to fluctuating light because of self-shading and cloud movements. As changing frequency is a key characteristic of fluctuating light, we speculated that rapid light fluctuation may induce rapid photosynthetic responses, which may protect leaves against photoinhibition. To test this hypothesis, maize seedlings were grown under fluctuating light with various frequencies (1, 10, and 100 cycles of fluctuations/10 h), and changes in growth, chlorophyll content, gas exchange, chlorophyll a fluorescence, and P700 were analyzed carefully. Our data show that though the growth and light-saturated photosynthetic rate were depressed by rapidly fluctuating light, photosynthesis induction was clearly speeded up. Furthermore, more rapid fluctuation of light strikingly reduced the chlorophyll content, while thermal dissipation was triggered and enhanced. The chlorophyll a fluorescence induction kinetics and P700 absorption results showed that the activities of both photosystem II and photosystem I decreased as the frequency of the fluctuating light increased. In all treatments, the light intensities of the fluctuating light were kept constant. Therefore, rapid light fluctuation frequency itself induced the acceleration of photosynthetic induction and the enhancement of photoprotection in maize seedlings, which play important roles in protecting photosynthetic apparatus against fluctuating high light to a certain extent.


Assuntos
Adaptação Ocular/fisiologia , Adaptação Fisiológica , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Luz Solar/efeitos adversos , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Estresse Fisiológico
14.
Photosynth Res ; 149(1-2): 121-134, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32297101

RESUMO

Biological invasion is a hot topic in ecological research. Most studies on the physiological mechanisms of plants focus on leaves, but few studies focus on stems. To study the tolerance of invasive plant (Sphagneticola trilobata L.) to low temperature, relevant physiological indicators (including anthocyanin and chlorophyll) in different organs (leaves and stems) were analyzed, using a native species (Sphagneticola calendulacea L.) as the control. The results showed that, upon exposure to low temperature for 15 days, the stems of two Sphagneticola species were markedly reddened, their anthocyanin content increased, chlorophyll and chlorophyll fluorescence parameters decreased, and the accumulation of reactive oxygen species in the stem increased. The percentage increases of antioxidants and total antioxidant capacities in stems were significantly higher in S. trilobata than in S. calendulacea. This showed that S. trilobata had higher cold tolerance in stems while leaves were opposite. To further verify the higher cold tolerance of the stem of S. trilobata, a defoliation experiment was designed. We found that the defoliated stem of S. trilobata reduced anthocyanin accumulation and increased chlorophyll content, while alleviating membrane lipid damage and electrical conductivity, and the defoliated stem still showed an increase in stem diameter and biomass under low temperature. The discovery of the physiological and adaptive mechanisms of the stem of S. trilobata to low temperature will provide a theoretical basis for explaining how S. trilobata maintains its annual growth in South China. This is of great significance for predicting the future spread of cloned and propagated invasive plants.


Assuntos
Adaptação Fisiológica , Asteraceae/fisiologia , Temperatura Baixa/efeitos adversos , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Plantas Daninhas/fisiologia , China , Espécies Introduzidas
15.
Photosynth Res ; 149(1-2): 155-170, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33131005

RESUMO

It is hypothesized that plant submergence tolerance could be assessed from the decline of plant biomass due to submergence, as biomass integrates all eco-physiological processes leading to fitness. An alternative hypothesis stated that the consumption rate of carbohydrate is essential in differing tolerance to submergence. In the present study, the responses of biomass, biomass allocation, and carbohydrate content to simulated long-term winter submergence were assessed in four tolerant and four sensitive perennials. The four tolerant perennials occur in a newly established riparian ecosystem created by The Three Gorges Dam, China. They had 100% survival after 120 days' simulated submergence, and had full photosynthesis recovery after 30 days' re-aeration, and the photosynthetic rate was positively related to the growth during the recovery period. Tolerant perennials were characterized by higher carbohydrate levels, compared with the four sensitive perennials (0% survival) at the end of submergence. Additionally, by using a method which simulates posterior estimates, and bootstraps the confidence interval for the difference between strata means, it was found that the biomass response to post-hypoxia, rather than that to submergence, could be a reliable indicator to assess submergence tolerance. Interestingly, the differences of changes in carbohydrate content between tolerant and sensitive perennials during submergence were significant, which were distinct from the biomass response, supporting the hypothesis that tolerant perennials could sacrifice non-vital components of biomass to prioritize the saving of carbohydrates for later recovery. Our study provides some insight into the underlying mechanism(s) of perennials' tolerance to submergence in ecosystems such as temperate wetland and reservoir riparian.


Assuntos
Adaptação Fisiológica , Biomassa , Metabolismo dos Carboidratos , Inundações , Imersão/fisiopatologia , Fotossíntese/fisiologia , Estações do Ano , Agrimonia/fisiologia , Amaranthaceae/fisiologia , China , Chrysanthemum/fisiologia , Cynodon/fisiologia , Paspalum/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Plantaginaceae/fisiologia , Poaceae/fisiologia
16.
Sci Rep ; 9(1): 17275, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754181

RESUMO

The quenching of chlorophyll fluorescence caused by photodamage of Photosystem II (qI) is a well recognized phenomenon, where the nature and physiological role of which are still debatable. Paradoxically, photodamage to the reaction centre of Photosystem II is supposed to be alleviated by excitation quenching mechanisms which manifest as fluorescence quenchers. Here we investigated the time course of PSII photodamage in vivo and in vitro and that of picosecond time-resolved chlorophyll fluorescence (quencher formation). Two long-lived fluorescence quenching processes during photodamage were observed and were formed at different speeds. The slow-developing quenching process exhibited a time course similar to that of the accumulation of photodamaged PSII, while the fast-developing process took place faster than the light-induced PSII damage. We attribute the slow process to the accumulation of photodamaged PSII and the fast process to an independent quenching mechanism that precedes PSII photodamage and that alleviates the inactivation of the PSII reaction centre.


Assuntos
Clorofila/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Estiolamento/fisiologia , Fluorescência , Luz , Fotólise , Espectrometria de Fluorescência , Spinacia oleracea/metabolismo
17.
Photosynth Res ; 142(3): 321-334, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31520186

RESUMO

Cyclic electron flow (CEF) around photosystem I (PSI) is essential for generating additional ATP and enhancing efficient photosynthesis. Accurate estimation of CEF requires knowledge of the fractions of absorbed light by PSI (fI) and PSII (fII), which are only known for a few model species such as spinach. No measures of fI are available for C4 grasses under different irradiances. We developed a new method to estimate (1) fII in vivo by concurrently measuring linear electron flux through both photosystems [Formula: see text] in leaf using membrane inlet mass spectrometry (MIMS) and total electron flux through PSII (ETR2) using chlorophyll fluorescence by a Dual-PAM at low light and (2) CEF as ETR1-[Formula: see text]. For a C3 grass, fI was 0.5 and 0.4 under control (high light) and shade conditions, respectively. C4 species belonging to NADP-ME and NAD-ME subtypes had fI of 0.6 and PCK subtype had 0.5 under control. All shade-grown C4 species had fI of 0.6 except for NADP-ME grass which had 0.7. It was also observed that fI ranged between 0.3 and 0.5 for gymnosperm, liverwort and fern species. CEF increased with irradiance and was induced at lower irradiances in C4 grasses and fern relative to other species. CEF was greater in shade-grown plants relative to control plants except for C4 NADP-ME species. Our study reveals a range of CEF and fI values in different plant functional groups. This variation must be taken into account for improved photosynthetic calculations and modelling.


Assuntos
Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia , Antimicina A/farmacologia , Clorofila/química , Clorofila/metabolismo , Transporte de Elétrons , Fluorescência , Luz , Espectrometria de Massas/métodos , NAD/metabolismo , NADP/metabolismo , Panicum/fisiologia , Fotossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Poaceae/fisiologia , Especificidade da Espécie , Zea mays/fisiologia
18.
Plant Cell Physiol ; 60(10): 2206-2219, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271439

RESUMO

Photosynthetic induction, a gradual increase in photosynthetic rate on a transition from darkness or low light to high light, has ecological significance, impact on biomass accumulation in fluctuating light and relevance to photoprotection in strong light. However, the experimental quantification of the component electron fluxes in and around both photosystems during induction has been rare. Combining optimized chlorophyll fluorescence, the redox kinetics of P700 [primary electron donor in Photosystem I (PSI)] and membrane inlet mass spectrometry in the absence/presence of inhibitors/mediator, we partially estimated the components of electron fluxes in spinach leaf disks on transition from darkness to 1,000 �mol photons�m-2�s-1 for up to 10 min, obtaining the following findings: (i) the partitioning of energy between both photosystems did not change noticeably; (ii) in Photosystem II (PSII), the combined cyclic electron flow (CEF2) and charge recombination (CR2) to the ground state decreased gradually toward 0 in steady state; (iii) oxygen reduction by electrons from PSII, partly bypassing PSI, was small but measurable; (iv) cyclic electron flow around PSI (CEF1) peaked before becoming somewhat steady; (v) peak magnitudes of some of the electron fluxes, all probably photoprotective, were in the descending order: CEF1 > CEF2 + CR2 > chloroplast O2 uptake; and (vi) the chloroplast NADH dehydrogenase-like complex appeared to aid the antimycin A-sensitive CEF1. The results are important for fine-tuning in silico simulation of in vivo photosynthetic electron transport processes; such simulation is, in turn, necessary to probe partial processes in a complex network of interactions in response to environmental changes.


Assuntos
Transporte de Elétrons , Oxigênio/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Spinacia oleracea/fisiologia , Antimicina A/farmacologia , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Escuridão , Fluorescência , Cinética , Luz , Oxirredução , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Spinacia oleracea/efeitos da radiação
19.
Funct Plant Biol ; 46(6): 567-583, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-32172734

RESUMO

Plants adjust the relative sizes of PSII and PSI antennae in response to the spectral composition of weak light favouring either photosystem by processes known as state transitions (ST), attributed to a discrete antenna migration involving phosphorylation of light-harvesting chlorophyll-protein complexes in PSII. Here for the first time we monitored the extent and dynamics of ST in leaves from estimates of optical absorption cross-section (relative PSII antenna size; aPSII). These estimates were obtained from in situ measurements of functional absorption cross-section (σPSII) and maximum photochemical efficiency of PSII (φPSII); i.e. aPSII = σPSII/φPSII (Kolber et al. 1998) and other parameters from a light induced fluorescence transient (LIFT) device (Osmond et al. 2017). The fast repetition rate (FRR) QA flash protocol of this instrument monitors chlorophyll fluorescence yields with reduced QA irrespective of the redox state of plastoquinone (PQ), as well as during strong ~1 s white light pulses that fully reduce the PQ pool. Fitting this transient with the FRR model monitors kinetics of PSII → PQ, PQ → PSI, and the redox state of the PQ pool in the 'PQ pool control loop' that underpins ST, with a time resolution of a few seconds. All LIFT/FRR criteria confirmed the absence of ST in antenna mutant chlorina-f2 of barley and asLhcb2-12 of Arabidopsis, as well as STN7 kinase mutants stn7 and stn7/8. In contrast, wild-type barley and Arabidopsis genotypes Col, npq1, npq4, OEpsbs, pgr5 bkg and pgr5, showed normal ST. However, the extent of ST (and by implication the size of the phosphorylated LHCII pool participating in ST) deduced from changes in a'PSII and other parameters with reduced QA range up to 35%. Estimates from strong WL pulses in the same assay were only ~10%. The larger estimates of ST from the QA flash are discussed in the context of contemporary dynamic structural models of ST involving formation and participation of PSII and PSI megacomplexes in an 'energetically connected lake' of phosphorylated LHCII trimers (Grieco et al. 2015). Despite the absence of ST, asLhcb2-12 displays normal wild-type modulation of electron transport rate (ETR) and the PQ pool during ST assays, reflecting compensatory changes in antenna LHCIIs in this genotype. Impaired LHCII phosphorylation in stn7 and stn7/8 accelerates ETR from PSII →PQ, over-reducing the PQ pool and abolishing the yield difference between the QA flash and WL pulse, with implications for photochemical and thermal phases of the O-J-I-P transient.


Assuntos
Clorofila , Complexo de Proteína do Fotossistema II , Fluorescência , Folhas de Planta , Tilacoides
20.
Funct Plant Biol ; 45(11): 1138-1148, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32290975

RESUMO

The cyclic electron flux (CEF) around photosystem I (PSI) was discovered in isolated chloroplasts more than six decades ago, but its quantification has been hampered by the absence of net formation of a product or net consumption of a substrate. We estimated in vivo CEF in leaves as the difference (ΔFlux) between the total electron flux through PSI (ETR1) measured by a near infrared signal, and the linear electron flux through both photosystems by optimised measurement of chlorophyll a fluorescence (LEFfl). Chlorophyll fluorescence was excited by modulated green light from a light-emitting diode at an optimal average irradiance, and the fluorescence was detected at wavelengths >710nm. In this way, LEFfl matched the gross rate of oxygen evolution multiplied by 4 (LEFO2) in broad-spectrum white actinic irradiance up to half (spinach, poplar and rice) or one third (cotton) of full sunlight irradiance. This technique of estimating CEF can be applied to leaves attached to a plant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...