Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 41(20): 10659-10677, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36533331

RESUMO

In Alzheimer's disease pathology, inhibitors of nuclear factor kappa-ß kinase subunit ß (IKKB) and Tumor necrosis factor receptor 1 (TNFR1) signaling are linked to neuroinflammation-mediated cognitive decline. We explored the role of a phosphodiesterase 5 inhibitor (PDE5I) with dual antagonistic action on IKKB and TNFR1 to inhibit nuclear factor kappa B (NF-kB) and curb neuroinflammation. In the in silico approach, the FDA-approved Zinc 15 library was docked with IKKB and TNFR1. The top compound with dual antagonistic action on IKKB and TNFR1 was selected based on bonding and non-bonding interactions. Further, induced fit docking (IFD), molecular mechanics-generalized Born and surface area (MMGBSA), and molecular dynamic studies were carried out and evaluated. Lipopolysaccharide (LPS) administration caused a neuroinflammation-mediated cognitive decline in mice. Two doses of avanafil were administered for 28 days while LPS was administered for 10 days. Morris water maze (MWM) along with the passive avoidance test (PAT) were carried out. Concurrently brain levels of inflammatory markers, oxidative parameters, amyloid beta (Aß), IKKB and NF-kB levels were estimated. Avanafil produced good IKKB and TNFR1 binding ability. It interacted with crucial inhibitory amino acids of IKKB and TNFR1. MD analysis predicted good stability of avanafil with TNFR1 and IKKB. Avanafil 6 mg/kg could significantly improve performance in MWM, PAT and oxidative parameters and reduce Aß levels and inflammatory markers. As compared to avanafil 3 mg/kg, 6 mg/kg dose was found to exert better efficacy against elevated Aß , neuroinflammatory cytokines and oxidative markers while improving behavioural parameters.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Quinase I-kappa B , Peptídeos beta-Amiloides/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral , NF-kappa B , Doenças Neuroinflamatórias , Lipopolissacarídeos
2.
Cells ; 11(24)2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36552875

RESUMO

Astrocytes are important for maintaining cholesterol metabolism, glutamate uptake, and neurotransmission. Indeed, inflammatory processes and neurodegeneration contribute to the altered morphology, gene expression, and function of astrocytes. Astrocytes, in collaboration with numerous microRNAs, regulate brain cholesterol levels as well as glutamatergic and inflammatory signaling, all of which contribute to general brain homeostasis. Neural electrical activity, synaptic plasticity processes, learning, and memory are dependent on the astrocyte-neuron crosstalk. Here, we review the involvement of astrocytic microRNAs that potentially regulate cholesterol metabolism, glutamate uptake, and inflammation in Alzheimer's disease (AD). The interaction between astrocytic microRNAs and long non-coding RNA and transcription factors specific to astrocytes also contributes to the pathogenesis of AD. Thus, astrocytic microRNAs arise as a promising target, as AD conditions are a worldwide public health problem. This review examines novel therapeutic strategies to target astrocyte dysfunction in AD, such as lipid nanodiscs, engineered G protein-coupled receptors, extracellular vesicles, and nanoparticles.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Fatores de Transcrição/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ácido Glutâmico/metabolismo , Colesterol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...