Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cogn Neurodyn ; 9(5): 535-47, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26379803

RESUMO

Microarray gene expression data can provide insights into biological processes at a system-wide level and is commonly used for reverse engineering gene regulatory networks (GRN). Due to the amalgamation of noise from different sources, microarray expression profiles become inherently noisy leading to significant impact on the GRN reconstruction process. Microarray replicates (both biological and technical), generated to increase the reliability of data obtained under noisy conditions, have limited influence in enhancing the accuracy of reconstruction . Therefore, instead of the conventional GRN modeling approaches which are deterministic, stochastic techniques are becoming increasingly necessary for inferring GRN from noisy microarray data. In this paper, we propose a new stochastic GRN model by investigating incorporation of various standard noise measurements in the deterministic S-system model. Experimental evaluations performed for varying sizes of synthetic network, representing different stochastic processes, demonstrate the effect of noise on the accuracy of genetic network modeling and the significance of stochastic modeling for GRN reconstruction . The proposed stochastic model is subsequently applied to infer the regulations among genes in two real life networks: (1) the well-studied IRMA network, a real-life in-vivo synthetic network constructed within the Saccharomyces cerevisiae yeast, and (2) the SOS DNA repair network in Escherichia coli.

2.
Cogn Neurodyn ; 8(3): 251-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24808933

RESUMO

Gene regulatory network (GRN) consists of interactions between transcription factors (TFs) and target genes (TGs). Recently, it has been observed that micro RNAs (miRNAs) play a significant part in genetic interactions. However, current microarray technologies do not capture miRNA expression levels. To overcome this, we propose a new technique to reverse engineer GRN from the available partial microarray data which contains expression levels of TFs and TGs only. Using S-System model, the approach is adapted to cope with the unavailability of information about the expression levels of miRNAs. The versatile Differential Evolutionary algorithm is used for optimization and parameter estimation. Experimental studies on four in silico networks, and a real network of Saccharomyces cerevisiae called IRMA network, show significant improvement compared to traditional S-System approach.

3.
BMC Bioinformatics ; 14: 196, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23777625

RESUMO

BACKGROUND: In any gene regulatory network (GRN), the complex interactions occurring amongst transcription factors and target genes can be either instantaneous or time-delayed. However, many existing modeling approaches currently applied for inferring GRNs are unable to represent both these interactions simultaneously. As a result, all these approaches cannot detect important interactions of the other type. S-System model, a differential equation based approach which has been increasingly applied for modeling GRNs, also suffers from this limitation. In fact, all S-System based existing modeling approaches have been designed to capture only instantaneous interactions, and are unable to infer time-delayed interactions. RESULTS: In this paper, we propose a novel Time-Delayed S-System (TDSS) model which uses a set of delay differential equations to represent the system dynamics. The ability to incorporate time-delay parameters in the proposed S-System model enables simultaneous modeling of both instantaneous and time-delayed interactions. Furthermore, the delay parameters are not limited to just positive integer values (corresponding to time stamps in the data), but can also take fractional values. Moreover, we also propose a new criterion for model evaluation exploiting the sparse and scale-free nature of GRNs to effectively narrow down the search space, which not only reduces the computation time significantly but also improves model accuracy. The evaluation criterion systematically adapts the max-min in-degrees and also systematically balances the effect of network accuracy and complexity during optimization. CONCLUSION: The four well-known performance measures applied to the experimental studies on synthetic networks with various time-delayed regulations clearly demonstrate that the proposed method can capture both instantaneous and delayed interactions correctly with high precision. The experiments carried out on two well-known real-life networks, namely IRMA and SOS DNA repair network in Escherichia coli show a significant improvement compared with other state-of-the-art approaches for GRN modeling.


Assuntos
Engenharia Genética , Modelos Biológicos , Modelos Genéticos , Resposta SOS em Genética/genética , Algoritmos , Escherichia coli/genética , Redes Reguladoras de Genes , Fatores de Tempo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...