Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Can J Neurol Sci ; 49(5): 662-671, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34321129

RESUMO

BACKGROUND: To investigate the relative contributions of cerebral cortex and basal ganglia to movement stopping, we tested the optimum combination Stop Signal Reaction Time (ocSSRT) and median visual reaction time (RT) in patients with Alzheimer's disease (AD) and Parkinson's disease (PD) and compared values with data from healthy controls. METHODS: Thirty-five PD patients, 22 AD patients, and 29 healthy controls were recruited to this study. RT and ocSSRT were measured using a hand-held battery-operated electronic box through a stop signal paradigm. RESULT: The mean ocSSRT was found to be 309 ms, 368 ms, and 265 ms in AD, PD, and healthy controls, respectively, and significantly prolonged in PD compared to healthy controls (p = 0.001). The ocSSRT but not RT could separate AD from PD patients (p = 0.022). CONCLUSION: Our data suggest that subcortical networks encompassing dopaminergic pathways in the basal ganglia play a more important role than cortical networks in movement-stopping. Combining ocSSRT with other putative indices or biomarkers of AD (and other dementias) could increase the accuracy of early diagnosis.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Doença de Alzheimer/diagnóstico , Gânglios da Base , Dopamina , Humanos , Doença de Parkinson/diagnóstico , Tempo de Reação
2.
Front Hum Neurosci ; 14: 567177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132880

RESUMO

Introduction: The ability to stop the execution of a movement in response to an external cue requires intact executive function. The effect of psychotropic drugs on movement inhibition is largely unknown. Movement stopping can be estimated by the Stop Signal Reaction Time (SSRT). In a recent publication, we validated an improved measure of SSRT (optimum combination SSRT, ocSSRT). Here we explored how diazepam, which enhances transmission at GABAA receptors, affects ocSSRT. Methods: Nine healthy individuals were randomized to receive placebo, 5 mg or 10 mg doses of diazepam. Each participant received both the dosage of drug and placebo orally on separate days with adequate washout. The ocSSRT and simple reaction time (RT) were estimated through a stop-signal task delivered via a battery-operated box incorporating green (Go) and red (Stop) light-emitting diodes. The task was performed just before and 1 h after dosing. Result: The mean change in ocSSRT after 10 mg diazepam was significantly higher (+27 ms) than for placebo (-1 ms; p = 0.012). By contrast, the mean change in simple response time remained comparable in all three dosing groups (p = 0.419). Conclusion: Our results confirm that a single therapeutic adult dose of diazepam can alter motor inhibition in drug naïve healthy individuals. The selective effect of diazepam on ocSSRT but not simple RT suggests that GABAergic neurons may play a critical role in movement-stopping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...