Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(10): 12472-12482, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33656333

RESUMO

CO2 and O2 gas permeability are paramount concerns in food packaging. Here, the permeability of cellulose nanocrystals (CNCs) and polyvinyl alcohol (PVA) coatings was explored as it relates to varied CNC content. Specifically, this work focuses on the role of PVA in rheology and barrier performance of the CNC films. Results show that shear-casted CNC films are transparent and have a high-order parameter, which is attributed to the shear-thinning behavior of the CNCs. The barrier performance of the CNC films improved because of the synergistic effect of having both alignment of CNCs and a lower free volume. The CNC-PVA films exhibited excellent barrier performance as compared to traditional engineered polymers, even much higher than high barrier ethylene-vinyl alcohol copolymer films. Furthermore, the moisture sensitivity of the films was greatly diminished with the addition of PVA. Overall, the results show applicability of CNC-PVA coating formulations for high barrier packaging applications.

2.
ACS Appl Mater Interfaces ; 12(21): 24380-24389, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32352751

RESUMO

Cellulose nanocrystals (CNCs) are of increasing interest for packaging applications because of their biodegradability, low cost, high crystallinity, and high aspect ratio. The objective of this study was to use positron annihilation lifetime spectroscopy (PALS) to investigate the free volume of CNC films with different structural arrangements (chiral nematic vs shear-oriented CNC films) and relate this information to gas barrier performance. It was found that sheared CNC films with higher CNC alignment have lower free volume and hence have more tortuosity than chiral nematic self-assembled films, which lowers gas diffusion throughout the films. The overall barrier performance of the aligned CNC film obtained in this study has a higher barrier performance than high barrier polymer films like PVOH and EVOH. Furthermore, a modified model was developed for single-component CNC films to predict the gas permeability with variation of CNC alignment with validation by the data taken.

3.
Adv Mater ; 32(26): e1908291, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32363647

RESUMO

Hunger and chronic undernourishment impact over 800 million people, which translates to ≈10.7% of the world's population. While countries are increasingly making efforts to reduce poverty and hunger by pursuing sustainable energy and agricultural practices, a third of the food produced around the globe still is wasted and never consumed. Reducing food shortages is vital in this effort and is often addressed by the development of genetically modified produce or chemical additives and inedible coatings, which create additional health and environmental concerns. Herein, a multifunctional bio-nanocomposite comprised largely of egg-derived polymers and cellulose nanomaterials as a conformal coating onto fresh produce that slows down food decay by retarding ripening, dehydration, and microbial invasion is reported. The coating is edible, washable, and made from readily available inexpensive or waste materials, which makes it a promising economic alternative to commercially available fruit coatings and a solution to combat food wastage that is rampant in the world.


Assuntos
Filmes Comestíveis , Armazenamento de Alimentos/métodos , Frutas/química , Nanocompostos/química , Celulose/química , Curcumina/química , Clara de Ovo/química , Gema de Ovo/química , Tensão Superficial , Viscosidade
4.
ACS Appl Mater Interfaces ; 11(1): 1376-1383, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30566328

RESUMO

Cellulose nanomaterials are promising materials for the polymer industry due to their abundance and renewability. In packaging applications, these materials may impart enhanced gas barrier performance due to their high crystallinity and polarity. In this work, low barrier to superior gas barrier pristine nanocellulose films were produced using a shear-coating technique to obtain a range of anisotropic films. Induction of anisotropy in a nanocellulose film can control the overall free volume of the system which effectively controls the gas diffusion path; hence, controlled anisotropy results in tunable barrier properties of the nanocellulose films. The highest anisotropy materials showed a maximum of 900-fold oxygen barrier improvement compared to the isotropic arrangement of nanocellulose film. The Bharadwaj model of nanocomposite permeability was modified for pure nanoparticles, and the CNC data were fitted with good agreement. Overall, the oxygen barrier performance of anisotropic nanocellulose films was 97 and 27 times better than traditional barrier materials such as biaxially oriented poly(ethylene terephthalate) (BoPET) and ethylene vinyl alcohol copolymer (EVOH), respectively, and thus could be utilized for oxygen-sensitive packaging applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...