Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(19): 13133-13141, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695282

RESUMO

Triphenylmethyl (trityl) radicals have shown potential for use in organic optoelectronic applications, but the design of practical trityl structures has been limited to donor/radical charge-transfer systems due to the poor luminescence of alternant symmetry hydrocarbons. Here, we circumvent the symmetry-forbidden transition of alternant hydrocarbons via excited-state symmetry breaking in a series of phenyl-substituted tris(2,4,6-trichlorophenyl)methyl (TTM) radicals. We show that 3-fold phenyl substitution enhances the emission of the TTM radical and that steric control modulates the optical properties in these systems. Simple ortho-methylphenyl substitution boosts the photoluminescence quantum efficiency from 1% (for TTM) to 65% at a peak wavelength of 612 nm (for 2-T3TTM) in solution. In the crystalline solid state, the neat 2-T3TTM radical shows a remarkably high photoluminescence quantum efficiency of 25% for emission peaking at 706 nm. This has implications in the design of aryl-substituted radical structures where the electronic coupling of the substituents influences variables such as emission, charge transfer, and spin interaction.

2.
Nature ; 629(8011): 355-362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720042

RESUMO

The coupling of excitons in π-conjugated molecules to high-frequency vibrational modes, particularly carbon-carbon stretch modes (1,000-1,600 cm-1) has been thought to be unavoidable1,2. These high-frequency modes accelerate non-radiative losses and limit the performance of light-emitting diodes, fluorescent biomarkers and photovoltaic devices. Here, by combining broadband impulsive vibrational spectroscopy, first-principles modelling and synthetic chemistry, we explore exciton-vibration coupling in a range of π-conjugated molecules. We uncover two design rules that decouple excitons from high-frequency vibrations. First, when the exciton wavefunction has a substantial charge-transfer character with spatially disjoint electron and hole densities, we find that high-frequency modes can be localized to either the donor or acceptor moiety, so that they do not significantly perturb the exciton energy or its spatial distribution. Second, it is possible to select materials such that the participating molecular orbitals have a symmetry-imposed non-bonding character and are, thus, decoupled from the high-frequency vibrational modes that modulate the π-bond order. We exemplify both these design rules by creating a series of spin radical systems that have very efficient near-infrared emission (680-800 nm) from charge-transfer excitons. We show that these systems have substantial coupling to vibrational modes only below 250 cm-1, frequencies that are too low to allow fast non-radiative decay. This enables non-radiative decay rates to be suppressed by nearly two orders of magnitude in comparison to π-conjugated molecules with similar bandgaps. Our results show that losses due to coupling to high-frequency modes need not be a fundamental property of these systems.

3.
J Am Chem Soc ; 146(4): 2379-2386, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38251985

RESUMO

Control over the stereochemistry of metal-organic cages can give rise to useful functions that are entwined with chirality, such as stereoselective guest binding and chiroptical applications. Here, we report a chiral CuI12L4 pseudo-octahedral cage that self-assembled from condensation of triaminotriptycene, aminoquinaldine, and diformylpyridine subcomponents around CuI templates. The corners of this cage consist of six head-to-tail dicopper(I) helicates whose helical chirality can be controlled by the addition of enantiopure 1,1'-bi-2-naphthol (BINOL) during the assembly process. Chiroptical and nuclear magnetic resonance (NMR) studies elucidated the process and mechanism of stereochemical information transfer from BINOL to the cage during the assembly process. Initially formed CuI(BINOL)2 thus underwent stereoselective ligand exchange during the formation of the chiral helicate corners of the cage, which determined the overall cage stereochemistry. The resulting dicopper(I) helicate corners of the cage were also shown to generate circularly polarized luminescence.

4.
Nat Commun ; 14(1): 6589, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852998

RESUMO

Non-centrosymmetric molecular crystals have a plethora of applications, such as piezoelectric transducers, energy storage and nonlinear optical materials owing to their unique structural order which is absent in other synthetic materials. As most crystals are brittle, their efficiency declines upon prolonged usage due to fatigue or catastrophic failure, limiting their utilities. Some natural substances, like bone, enamel, leaf and skin, function efficiently, last a life-time, thanks to their inherent self-healing nature. Therefore, incorporating self-healing ability in crystalline materials will greatly broaden their scope. Here, we report single crystals of a dibenzoate derivative, capable of self-healing within milliseconds via autonomous actuation. Systematic quantitative experiments reveal the limit of mechanical forces that the self-healing crystals can withstand. As a proof-of-concept, we also demonstrate that our self-healed crystals can retain their second harmonic generation (SHG) with high efficiency. Kinematic analysis of the actuation in our system also revealed its impressive performance parameters, and shows actuation response times in the millisecond range.

5.
J Am Chem Soc ; 145(39): 21330-21343, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37738152

RESUMO

The family of hybrid organic-inorganic lead-halide perovskites are the subject of intense interest for optoelectronic applications, from light-emitting diodes to photovoltaics to X-ray detectors. Due to the inert nature of most organic molecules, the inorganic sublattice generally dominates the electronic structure and therefore the optoelectronic properties of perovskites. Here, we use optically and electronically active carbazole-based Cz-Ci molecules, where Ci indicates an alkylammonium chain and i indicates the number of CH2 units in the chain, varying from 3 to 5, as cations in the two-dimensional (2D) perovskite structure. By investigating the photophysics and charge transport characteristics of (Cz-Ci)2PbI4, we demonstrate a tunable electronic coupling between the inorganic lead-halide and organic layers. The strongest interlayer electronic coupling was found for (Cz-C3)2PbI4, where photothermal deflection spectroscopy results remarkably reveal an organic-inorganic charge transfer state. Ultrafast transient absorption spectroscopy measurements demonstrate ultrafast hole transfer from the photoexcited lead-halide layer to the Cz-Ci molecules, the efficiency of which increases by varying the chain length from i = 5 to i = 3. The charge transfer results in long-lived carriers (10-100 ns) and quenched emission, in stark contrast to the fast (sub-ns) and efficient radiative decay of bound excitons in the more conventional 2D perovskite (PEA)2PbI4, in which phenylethylammonium (PEA) acts as an inert spacer. Electrical charge transport measurements further support enhanced interlayer coupling, showing increased out-of-plane carrier mobility from i = 5 to i = 3. This study paves the way for the rational design of 2D perovskites with combined inorganic-organic electronic properties through the wide range of functionalities available in the world of organics.

6.
Nat Commun ; 14(1): 4147, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438369

RESUMO

Neutral π-radicals have potential for use as light emitters in optoelectronic devices due to the absence of energetically low-lying non-emissive states. Here, we report a defect-free synthetic methodology via mesityl substitution at the para-positions of tris(2,4,6-trichlorophenyl)methyl radical. These materials reveal a number of novel optoelectronic properties. Firstly, mesityl substituted radicals show strongly enhanced photoluminescence arising from symmetry breaking in the excited state. Secondly, photoexcitation of thin films of 8 wt% radical in 4,4'-bis(carbazol-9-yl)-1,1'-biphenyl host matrix produces long lived (in the order of microseconds) intermolecular charge transfer states, following hole transfer to the host, that can show unexpectedly efficient red-shifted emission. Thirdly, covalent attachment of carbazole into the mesitylated radical gives very high photoluminescence yield of 93% in 4,4'-bis(carbazol-9-yl)-1,1'-biphenyl films and light-emitting diodes with maximum external quantum efficiency of 28% at a wavelength of 689 nm. Fourthly, a main-chain copolymer of the mesitylated radical and 9,9-dioctyl-9H-fluorene shows red-shifted emission beyond 800 nm.

7.
Angew Chem Int Ed Engl ; 62(40): e202308288, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37459561

RESUMO

A strategy to engineer the stacking of diketopyrrolopyrrole (DPP) dyes based on non-statistical metallosupramolecular self-assembly is introduced. For this, the DPP backbone is equipped with nitrogen-based donors that allow for different discrete assemblies to be formed upon the addition of Pd(II), distinguished by the number of π-stacked chromophores. A Pd3 L6 three-ring, a heteroleptic Pd2 L2 L'2 ravel composed of two crossing DPPs (flanked by two carbazoles), and two unprecedented self-penetrated motifs (a Pd2 L3 triple and a Pd2 L4 quadruple stack), were obtained and systematically investigated. With increasing counts of stacked chromophores, UV/Vis absorptions red-shift and emission intensities decrease, except for compound Pd2 L2 L'2 , which stands out with an exceptional photoluminescence quantum yield of 51 %. This is extraordinary for open-shell metal containing assemblies and explainable by an intra-assembly FRET process. The modular design and synthesis of soluble multi-chromophore building blocks offers the potential for the preparation of nanodevices and materials with applications in sensing, photo-redox catalysis and optics.

8.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 2): 148-156, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36920873

RESUMO

Amongst the derivatives of 4-biphenylcarboxylic acid and amino acid esters, the crystal structure of 4-biphenylcarboxy-(L)-phenylalaninate is unusual owing to its monoclinic symmetry within a pseudo-orthorhombic crystal system. The distortion is described by a disparate rotational property around the chiral centers (ϕchiral ≃ -129° and 58°) of the two molecules in the asymmetric unit. Each of these molecules comprises planar biphenyl moieties (ϕbiphenyl = 0°). Using temperature-dependent single-crystal X-ray diffraction experiments we show that the compound undergoes a phase transition below T ∼ 124 K that is characterized by a commensurate modulation wavevector, q = δ(101), δ = ½. The (3+1)-dimensional modulated structure at T = 100 K suggests that the phase transition drives the biphenyl moieties towards noncoplanar conformations with significant variation of internal torsion angle (ϕmaxbiphenyl ≤ 20°). These intramolecular rotations lead to dimerization of the molecular stacks that are described predominantly by distortions in intermolecular tilts (θmax ≤ 20°) and small variations in intermolecular distances (Δdmax ≃ 0.05 Å) between biphenyl molecules. Atypical of modulated structures and superstructures of biphenyl and other polyphenyls, the rotations of individual molecules are asymmetric (Δϕbiphenyl ≈ 5°) while ϕbiphenyl of one independent molecule is two to four times larger than the other. Crystal-chemical analysis and phase relations in superspace suggest multiple competing factors involving intramolecular steric factors, intermolecular H-C...C-H contacts and weak C-H...O hydrogen bonds that govern the distinctively unequal torsional properties of the molecules.

10.
Science ; 373(6552): 321-327, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34437150

RESUMO

Living tissue uses stress-accumulated electrical charge to close wounds. Self-repairing synthetic materials, which are typically soft and amorphous, usually require external stimuli, prolonged physical contact, and long healing times. We overcome many of these limitations in piezoelectric bipyrazole organic crystals, which recombine following mechanical fracture without any external direction, autonomously self-healing in milliseconds with crystallographic precision. Kelvin probe force microscopy, birefringence experiments, and atomic-resolution structural studies reveal that these noncentrosymmetric crystals, with a combination of hydrogen bonds and dispersive interactions, develop large stress-induced opposite electrical charges on fracture surfaces, prompting an electrostatically driven precise recombination of the pieces via diffusionless self-healing.

11.
Chem Asian J ; 16(12): 1634-1642, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33949124

RESUMO

Computational drug design is increasingly becoming important with new and unforeseen diseases like COVID-19. In this study, we present a new computational de novo drug design and repurposing method and applied it to find plausible drug candidates for the receptor binding domain (RBD) of SARS-CoV-2 (COVID-19). Our study comprises three steps: atom-by-atom generation of new molecules around a receptor, structural similarity mapping to existing approved and investigational drugs, and validation of their binding strengths to the viral spike proteins based on rigorous all-atom, explicit-water well-tempered metadynamics free energy calculations. By choosing the receptor binding domain of the viral spike protein, we showed that some of our new molecules and some of the repurposable drugs have stronger binding to RBD than hACE2. To validate our approach, we also calculated the free energy of hACE2 and RBD, and found it to be in an excellent agreement with experiments. These pool of drugs will allow strategic repurposing against COVID-19 for a particular prevailing conditions.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Desenho de Fármacos , Reposicionamento de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Antivirais/química , COVID-19/virologia , Simulação por Computador , Humanos , Modelos Moleculares , Conformação Proteica , Termodinâmica
12.
Angew Chem Int Ed Engl ; 59(45): 19878-19883, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32667123

RESUMO

Single crystals of optoelectronic materials that respond to external stimuli, such as mechanical, light, or heat, are immensely attractive for next generation smart materials. Here we report single crystals of a green fluorescent protein (GFP) chromophore analogue with irreversible mechanical bending and associated unusual enhancement of the fluorescence, which is attributed to the strained molecular packing in the perturbed region. Soft crystalline materials with such fluorescence intensity modulations occurring in response to mechanical stimuli under ambient pressure conditions will have potential implications for the design of technologically relevant tunable fluorescent materials.

13.
Angew Chem Int Ed Engl ; 59(27): 10971-10980, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32087039

RESUMO

Ductility is a common phenomenon in many metals but is difficult to achieve in molecular crystals. Organic crystals bend plastically on one or two face-specific directions but fracture when stressed in any other arbitrary directions. An exceptional metal-like ductility and malleability in the isomorphous crystals of two globular molecules, BH3 NMe3 and BF3 NMe3 , is reported, with characteristic tensile stretching, compression, twisting, and thinning. The mechanically deformed samples, which transition to lower symmetry phases, retain good long-range order amenable to structure determination by single-crystal X-ray diffraction. Molecules in these high-symmetry crystals interact through electrostatic forces (B- -N+ ) to form columnar structures with multiple slip planes and weak dispersive forces between columns. On the other hand, the limited number of facile slip planes and strong dihydrogen bonding in BH3 NHMe2 negates ductility. Our study has implications for the design of soft ferroelectrics, solid electrolytes, barocalorics, and soft robotics.

14.
Nat Commun ; 10(1): 3711, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31420538

RESUMO

Molecular crystals are not known to be as stiff as metals, composites and ceramics. Here we report an exceptional mechanical stiffness and high hardness in a known elastically bendable organic cocrystal [caffeine (CAF), 4-chloro-3-nitrobenzoic acid (CNB) and methanol (1:1:1)] which is comparable to certain low-density metals. Spatially resolved atomic level studies reveal that the mechanically interlocked weak hydrogen bond networks which are separated by dispersive interactions give rise to these mechanical properties. Upon bending, the crystals significantly conserve the overall energy by efficient redistribution of stress while perturbations in hydrogen bonds are compensated by strengthened π-stacking. Furthermore we report a remarkable stiffening and hardening in the elastically bent crystal. Hence, mechanically interlocked architectures provide an unexplored route to reach new mechanical limits and adaptability in organic crystals. This proof of concept inspires the design of light-weight, stiff crystalline organics with potential to rival certain inorganics, which currently seem inconceivable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...