Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circulation ; 135(7): 683-699, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-27899394

RESUMO

BACKGROUND: Ventricular arrhythmia is a leading cause of cardiac mortality. Most antiarrhythmics present paradoxical proarrhythmic side effects, culminating in a greater risk of sudden death. METHODS: We describe a new regulatory mechanism linking mitogen-activated kinase kinase-7 deficiency with increased arrhythmia vulnerability in hypertrophied and failing hearts using mouse models harboring mitogen-activated kinase kinase-7 knockout or overexpression. The human relevance of this arrhythmogenic mechanism is evaluated in human-induced pluripotent stem cell-derived cardiomyocytes. Therapeutic potentials by targeting this mechanism are explored in the mouse models and human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: Mechanistically, hypertrophic stress dampens expression and phosphorylation of mitogen-activated kinase kinase-7. Such mitogen-activated kinase kinase-7 deficiency leaves histone deacetylase-2 unphosphorylated and filamin-A accumulated in the nucleus to form a complex with Krüppel-like factor-4. This complex leads to Krüppel-like factor-4 disassociation from the promoter regions of multiple key potassium channel genes (Kv4.2, KChIP2, Kv1.5, ERG1, and Kir6.2) and reduction of their transcript levels. Consequent repolarization delays result in ventricular arrhythmias. Therapeutically, targeting the repressive function of the Krüppel-like factor-4/histone deacetylase-2/filamin-A complex with the histone deacetylase-2 inhibitor valproic acid restores K+ channel expression and alleviates ventricular arrhythmias in pathologically remodeled hearts. CONCLUSIONS: Our findings unveil this new gene regulatory avenue as a new antiarrhythmic target where repurposing of the antiepileptic drug valproic acid as an antiarrhythmic is supported.


Assuntos
Arritmias Cardíacas/prevenção & controle , MAP Quinase Quinase 7/metabolismo , Animais , Arritmias Cardíacas/fisiopatologia , Epigênese Genética , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Miócitos Cardíacos/metabolismo , Ratos
2.
Hypertension ; 66(6): 1176-83, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26483344

RESUMO

Pathological cardiac hypertrophy is regarded as a critical intermediate step toward the development of heart failure. Many signal transduction cascades are demonstrated to dictate the induction and progression of pathological hypertrophy; however, our understanding in regulatory mechanisms responsible for the suppression of hypertrophy remains limited. In this study, we showed that exacerbated hypertrophy induced by pressure overload in cardiac-deleted Pak1 mice was attributable to a failure to upregulate the antihypertrophic E3 ligase, Fbxo32, responsible for targeting proteins for the ubiquitin-degradation pathway. Under pressure overload, cardiac overexpression of constitutively active Pak1 mice manifested strong resilience against pathological hypertrophic remodeling. Mechanistic studies demonstrated that subsequent to Pak1 activation, the binding of Smad3 on a critical singular AGAC(-286)-binding site on the FBXO32 promoter was crucial for its transcriptional regulation. Pharmacological upregulation of Fbxo32 by Berberine ameliorated hypertrophic remodeling and improved cardiac performance in cardiac-deficient Pak1 mice under pressure overload. Our findings discover Smad3 and Fbxo32 as novel downstream components of the Pak1-dependent signaling pathway for the suppression of hypertrophy. This discovery opens a new venue for opportunities to identify novel targets for the management of cardiac hypertrophy.


Assuntos
Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteína Smad3/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Animais Recém-Nascidos , Aorta/patologia , Berberina/farmacologia , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , Células Cultivadas , Constrição Patológica , Immunoblotting , Masculino , Camundongos Knockout , Camundongos Transgênicos , Proteínas Musculares/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ligases SKP Culina F-Box/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Smad3/genética , Ativação Transcricional , Quinases Ativadas por p21/genética
3.
J Mol Cell Cardiol ; 72: 104-16, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24631771

RESUMO

Mitogen-activated protein kinases (MAPKs) are involved in the regulation of cardiac hypertrophy and myocyte survival. Extracellular signal regulated protein kinase 1 and 2 (ERK1/2) are key components in the MAPK signaling pathways. Dysfunction of ERK1/2 in congenital heart diseases (Noonan syndrome and LEOPARD syndrome) leads to cardiac hypertrophy. ERK2 contributes 70% of protein content to total ERK1/2 content in myocardium; however, the specific role of ERK2 in regulating cardiac hypertrophy is yet to be further defined. To investigate the specific role of ERK2 played in the cardiomyocytes, we generated and examined mice with cardiomyocyte-specific deletion of the erk2 gene (ERK2(cko) mice). Following short-term pathological hypertrophic stresses, the mutant mice showed attenuated hypertrophic remodeling characterized by a blunted increase in the cross-sectional area of individual myocytes, downregulation of hypertrophic foetal gene markers (ANP and BNP), and less interstitial fibrosis. However, increased cardiomyocyte apoptosis was observed. Upon prolonged stimulation, ERK2(cko) mice developed deterioration in cardiac function. However, absence of ERK2 did not affect physiological hypertrophy induced by 4weeks of swimming exercise. These results revealed an essential role for ERK2 in cardiomyocytes in the development of pathological hypertrophic remodeling and resistance to cell death.


Assuntos
Cardiomegalia/fisiopatologia , Proteína Quinase 1 Ativada por Mitógeno/deficiência , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Animais , Apoptose , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Fibrose , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Cultura Primária de Células , Estresse Fisiológico , Natação
4.
Circ Heart Fail ; 6(4): 833-44, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23753531

RESUMO

BACKGROUND: Hypertension or aortic stenosis causes pressure overload, which evokes hypertrophic myocardial growth. Sustained cardiac hypertrophy eventually progresses to heart failure. Growing evidence indicates that restraining hypertrophy could be beneficial; here, we discovered that FTY-720, an immunomodulator for treating multiple sclerosis, can reverse existing cardiac hypertrophy/fibrosis. METHODS AND RESULTS: Male C57/Bl6 mice underwent transverse aortic constriction (TAC) for 1 week followed by FTY-720 treatment for 2 weeks under continuing TAC. Compared with vehicle-treated TAC hearts, FTY-720 significantly reduced ventricular mass, ameliorated fibrosis, and improved cardiac performance. Mechanistic studies led us to discover that FTY-720 appreciably inhibited nuclear factor of activated T-cells (NFAT) activity. Moreover, we found that in primary cardiomyocytes (rat and human) pertussis toxin (Gi-coupled receptor inhibitor) substantially blocked the antihypertrophic effect of FTY-720. This observation was confirmed in a mouse model of pressure overload. Interestingly, gene array analysis of TAC hearts revealed that FTY-720 profoundly decreased gene expression of a group of matricellular proteins, of which periostin was prominent. Analysis of periostin protein expression in TAC-myocardium, as well as in rat and human cardiac fibroblasts, confirmed the array data. Moreover, we found that FTY-720 treatment or knockdown of periostin protein was able to inhibit transforming growth factor-ß responsiveness and decrease collagen expression. CONCLUSIONS: FTY-720 alleviates existing cardiac hypertrophy/fibrosis through mechanisms involving negative regulation of NFAT activity in cardiomyocytes and reduction of periostin expression allowing for a more homeostatic extracellular compartment milieu. Together, FTY-720 or its analogues could be a promising new approach for treating hypertrophic/fibrotic heart disease.


Assuntos
Cardiomegalia/tratamento farmacológico , Moléculas de Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/fisiologia , Imunossupressores/farmacologia , Miocárdio/patologia , Fatores de Transcrição NFATC/efeitos dos fármacos , Fatores de Transcrição NFATC/fisiologia , Propilenoglicóis/farmacologia , Esfingosina/análogos & derivados , Pressão Ventricular , Animais , Animais Recém-Nascidos , Células Cultivadas , Fibroblastos/citologia , Fibrose , Cloridrato de Fingolimode , Hemodinâmica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Esfingosina/farmacologia
5.
J Am Chem Soc ; 125(44): 13481-5, 2003 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-14583044

RESUMO

A new strategy for effecting cascade cyclization processes using nickel enolates has been developed. Nickel enolates may be cleanly generated by the oxidative cyclization of an enal and alkyne with Ni(0), and the resulting enolate may be functionalized by a variety of alkylation processes. Partially and fully intramolecular versions of the process allow the rapid synthesis of complex polycyclics from simple achiral, acyclic precursors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...