Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Front Mol Biosci ; 10: 1133123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006620

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has caused millions of infections and deaths worldwide. Limited treatment options and the threat from emerging variants underline the need for novel and widely accessible therapeutics. G-quadruplexes (G4s) are nucleic acid secondary structures known to affect many cellular processes including viral replication and transcription. We identified heretofore not reported G4s with remarkably low mutation frequency across >5 million SARS-CoV-2 genomes. The G4 structure was targeted using FDA-approved drugs that can bind G4s - Chlorpromazine (CPZ) and Prochlorperazine (PCZ). We found significant inhibition in lung pathology and lung viral load of SARS-CoV-2 challenged hamsters when treated with CPZ or PCZ that was comparable to the widely used antiviral drug Remdesivir. In support, in vitro G4 binding, inhibition of reverse transcription from RNA isolated from COVID-infected humans, and attenuated viral replication and infectivity in Vero cell cultures were clear in case of both CPZ and PCZ. Apart from the wide accessibility of CPZ/PCZ, targeting relatively invariant nucleic acid structures poses an attractive strategy against viruses like SARS-CoV-2, which spread fast and accumulate mutations quickly.

2.
Trends Genet ; 39(1): 59-73, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36404192

RESUMO

Although the impact of telomeres on physiology stands well established, a question remains: how do telomeres impact cellular functions at a molecular level? This is because current understanding limits the influence of telomeres to adjacent subtelomeric regions despite the wide-ranging impact of telomeres. Emerging work in two distinct aspects offers opportunities to bridge this gap. First, telomere-binding factors were found with non-telomeric functions. Second, locally induced DNA secondary structures called G-quadruplexes are notably abundant in telomeres, and gene regulatory regions genome wide. Many telomeric factors bind to G-quadruplexes for non-telomeric functions. Here we discuss a more general model of how telomeres impact the non-telomeric genome - through factors that associate at telomeres and genome wide - and influence cell-intrinsic functions, particularly aging, cancer, and pluripotency.


Assuntos
Quadruplex G , Telômero , Telômero/genética , Telômero/metabolismo , DNA/metabolismo , Heterocromatina
3.
Front Oncol ; 12: 959500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072788

RESUMO

Objective: The objective of this study is to evaluate the expression of different nicotinic acetylcholine receptors (nAChRs), programmed death ligand-1 (PD-L1), and dopamine receptor D2 (DRD2) as prognostic factors in lung cancer and any correlation among them. Since all of the above genes are typically upregulated in response to smoking, we hypothesized that a correlation might exist between DRD2, PD-L1, and nAChR expression in NSCLC patients with a smoking history and a prediction model may be developed to assess the clinical outcome. Methods: We retrospectively analyzed samples from 46 patients with primary lung adenocarcinoma who underwent surgical resection at Mayo Clinic Rochester from June 2000 to October 2008. The expression of PD-L1, DRD2, CHRNA5, CHRNA7, and CHRNA9 were analyzed by quantitative PCR and correlated amongst themselves and with age, stage and grade, smoking status, overall survival (OS), and relapse-free survival (RFS). Results: Only PD-L1 showed a statistically significant increase in expression in patients older than 65. All the above genes showed higher expression in stage IIIB than IIIA, but none reached statistical significance. Interestingly, we did not observe significant differences among never, former, and current smokers, but patients with pack years greater than 30 showed significantly higher expression of CHRNA9. We observed a strong positive correlation between PD-L1/DRD2, PD-L1/CHRNA5, and CHRNA5/CHRNA7 and a weak positive correlation between DRD2/CHRNA5 and DRD2/CHRNA7. Older age was independently associated with poor OS, whereas lower CHRNA7 expression was independently associated with better OS. Conclusions: We observed strong positive correlations among PD-L1, DRD2, and some of the nAChRs. We investigated their prognostic significance in lung cancer patients and found CHRNA7 to be an independent prognostic factor. Overall, the results obtained from this preliminary study warrant a large cohort-based analysis that may ultimately lead to potential patient-specific stratification biomarkers predicting cancer-treatment outcomes.

4.
Trends Cancer ; 8(8): 632-641, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35568649

RESUMO

Mutations in the promoter of human telomerase reverse transcriptase (hTERT) result in hyperactivation of hTERT. Notably, all mutations are G>A transitions, frequently found in a wide range of cancer types, and causally associated with cancer progression. Initially, the mutations were understood to reactivate hTERT by generating novel E26 transformation-specific (ETS) binding sites. Recent work reveals the role of DNA secondary structure G-quadruplexes, telomere binding factor(s), and chromatin looping in hTERT regulation. Here, we discuss these emerging findings in relation to the clinically significant promoter mutations to provide a broader understanding of the context-dependent outcomes that result in hTERT activation in normal and pathogenic conditions.


Assuntos
Neoplasias , Telomerase , Sítios de Ligação/genética , Humanos , Mutação , Neoplasias/genética , Regiões Promotoras Genéticas/genética , Telomerase/genética
5.
Cell Rep ; 35(7): 109154, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34010660

RESUMO

Human telomerase reverse transcriptase (hTERT) remains suppressed in most normal somatic cells. Resulting erosion of telomeres leads eventually to replicative senescence. Reactivation of hTERT maintains telomeres and triggers progression of >90% of cancers. However, any direct causal link between telomeres and telomerase regulation remains unclear. Here, we show that the telomere-repeat-binding-factor 2 (TRF2) binds hTERT promoter G-quadruplexes and recruits the polycomb-repressor EZH2/PRC2 complex. This is causal for H3K27 trimethylation at the hTERT promoter and represses hTERT in cancer as well as normal cells. Two highly recurrent hTERT promoter mutations found in many cancers, including ∼83% glioblastoma multiforme, that are known to destabilize hTERT promoter G-quadruplexes, showed loss of TRF2 binding in patient-derived primary glioblastoma multiforme cells. Ligand-induced G-quadruplex stabilization restored TRF2 binding, H3K27-trimethylation, and hTERT re-suppression. These results uncover a mechanism of hTERT regulation through a telomeric factor, implicating telomere-telomerase molecular links important in neoplastic transformation, aging, and regenerative therapy.


Assuntos
Quadruplex G , Telomerase/metabolismo , Humanos , Telômero/metabolismo
6.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801585

RESUMO

The metastasis suppressor function of NM23 proteins is widely understood. Multiple enzymatic activities of NM23 proteins have also been identified. However, relatively less known interesting aspects are being revealed from recent developments that corroborate the telomeric interactions of NM23 proteins. Telomeres are known to regulate essential physiological events such as metastasis, ageing, and cellular differentiation via inter-connected signalling pathways. Here, we review the literature on the association of NM23 proteins with telomeres or telomere-related factors, and discuss the potential implications of emerging telomeric functions of NM23 proteins. Further understanding of these aspects might be instrumental in better understanding the metastasis suppressor functions of NM23 proteins.


Assuntos
Envelhecimento , Regulação Neoplásica da Expressão Gênica , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Metástase Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Telômero/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Citoesqueleto/metabolismo , DNA/química , Quadruplex G , Humanos , Ativação Linfocitária , Mitocôndrias/metabolismo , Nucleosídeo Difosfato Quinase D/química , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Telômero/ultraestrutura , Fatores de Transcrição/metabolismo
7.
Acc Chem Res ; 54(1): 46-56, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33347280

RESUMO

The story of the non-duplex DNA form known as the G-quadruplex (G4) has traversed a winding path. From initial skepticism followed by debate to a surge in interest, the G4 story intertwines many threads. Starting with computational predictions of a gene regulatory role, which now include epigenetic functions, our group was involved in many of these advances along with many other laboratories. Following a brief background, set in the latter half of the last century when the concept of the G4 as a structure took ground, here we account the developments. This is through a lens that though focused on our groups' research presents work from many other groups that played significant roles. Together these provide a broad perspective to the G4 story. Initially we were intrigued on seeing potential G4 (pG4)-forming sequences, then known to be found primarily at the telomeres and immunoglobin switch regions, occurring throughout the genome and being particularly prevalent in promoters of bacteria. We further observed that pG4s were not only prevalent but also conserved through evolution in promoters of human, chimpanzee, mouse and rat genomes. This was between 2005 and 2007. Encouraged by these partly and partly in response to the view held by many that genome-wide presence of G4s were genomic "accidents", the focus shifted to seeking experimental evidence.In the next year, 2008, two independent findings showed promise. First, on treating human cancer cells with G4-binding ligands, we observed widespread change in gene expression. Second, our search for the missing G4-specific transcription factor, without which, importantly, G4s in promoters posed only half the story, yielded results. We determined how NM23-H2 (also known as NME2 or NDPK-B) interacts with G4s and how interaction of NM23-H2 with a G4 in the promoter of the oncogene c-myc was important for regulation of c-myc transcription. NM23-H2, and subsequently many other similar factors discovered by multiple groups, is possibly giving shape to what might be the "G4-transcriptome". Later, a close look at NM23-H2-G4 interaction in regulation of the human reverse transcriptase gene (hTERT) revealed the role of G4s in local epigenetic modifications. Meanwhile work from others showed how G4s impact histone modifications following replication. Together these show the intrinsic role of DNA sequence, through formation of DNA structure, in epigenetics.More recent work, however, was waiting to reveal aspects that tend to bring forth a completely new understanding of G4s. We observed that the telomere-repeat-binding-factor-2 (TRF2), known canonically to be telomere-associated, binds extensively outside telomeres throughout the genome. Moreover, a large fraction of the non-telomeric TRF2 sites comprise G4s. Second, the extent of non-telomeric TRF2 binding at promoters was dependent on telomere length. Thereby TRF2-induced epigenetic gene regulation was telomere-dependent. Together these implicate underlying connections that show signs of addressing an intriguing unanswered question that takes us back to the beginning: Why are G4s prevalent in two distinct regions, the telomeres and gene promoters?


Assuntos
Epigênese Genética , Quadruplex G , Animais , Humanos , Ligantes , Camundongos , Mutagênese , Regiões Promotoras Genéticas , Ligação Proteica , Ratos , Telomerase/genética , Telomerase/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Sítio de Iniciação de Transcrição
9.
J Biol Chem ; 295(30): 10245-10254, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32444498

RESUMO

Telomeres comprise specialized nucleic acid-protein complexes that help protect chromosome ends from DNA damage. Moreover, telomeres associate with subtelomeric regions through looping. This results in altered expression of subtelomeric genes. Recent observations further reveal telomere length-dependent gene regulation and epigenetic modifications at sites spread across the genome and distant from telomeres. This regulation is mediated through the telomere-binding protein telomeric repeat-binding factor 2 (TRF2). These observations suggest a role of telomeres in extra-telomeric functions. Most notably, telomeres have a broad impact on pluripotency and differentiation. For example, cardiomyocytes differentiate with higher efficacy from induced pluripotent stem cells having long telomeres, and differentiated cells obtained from human embryonic stem cells with relatively long telomeres have a longer lifespan. Here, we first highlight reports on these two seemingly distinct research areas: the extra-telomeric role of telomere-binding factors and the role of telomeres in pluripotency/stemness. On the basis of the observations reported in these studies, we draw attention to potential molecular connections between extra-telomeric biology and pluripotency. Finally, in the context of the nonlocal influence of telomeres on pluripotency and stemness, we discuss major opportunities for progress in molecular understanding of aging-related disorders and neurodegenerative diseases.


Assuntos
Envelhecimento/metabolismo , Diferenciação Celular , Doenças Neurodegenerativas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Telômero/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Dano ao DNA , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Células-Tronco Pluripotentes/patologia , Telômero/genética , Telômero/patologia , Homeostase do Telômero , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
11.
J Biol Chem ; 294(47): 17709-17722, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31575660

RESUMO

The role of the telomere repeat-binding factor 2 (TRF2) in telomere maintenance is well-established. However, recent findings suggest that TRF2 also functions outside telomeres, but relatively little is known about this function. Herein, using genome-wide ChIP-Seq assays of TRF2-bound chromatin from HT1080 fibrosarcoma cells, we identified thousands of TRF2-binding sites within the extra-telomeric genome. In light of this observation, we asked how TRF2 occupancy is organized within the genome. Interestingly, we found that extra-telomeric TRF2 sites throughout the genome are enriched in potential G-quadruplex-forming DNA sequences. Furthermore, we validated TRF2 occupancy at several promoter G-quadruplex motifs, which did adopt quadruplex forms in solution. TRF2 binding altered expression and the epigenetic state of several target promoters, indicated by histone modifications resulting in transcriptional repression of eight of nine genes investigated here. Furthermore, TRF2 occupancy and target gene expression were also sensitive to the well-known intracellular G-quadruplex-binding ligand 360A. Together, these results reveal an extensive genome-wide association of TRF2 outside telomeres and that it regulates gene expression in a G-quadruplex-dependent fashion.


Assuntos
Epigênese Genética , Quadruplex G , Regiões Promotoras Genéticas , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Genoma Humano , Código das Histonas , Humanos , Ligantes , Motivos de Nucleotídeos/genética , Ligação Proteica/genética , Transcrição Gênica
12.
PLoS Biol ; 17(8): e3000422, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398188

RESUMO

Histone H3 and its variants regulate gene expression but the latter are absent in most ascomycetous fungi. Here, we report the identification of a variant histone H3, which we have designated H3VCTG because of its exclusive presence in the CTG clade of ascomycetes, including Candida albicans, a human pathogen. C. albicans grows both as single yeast cells and hyphal filaments in the planktonic mode of growth. It also forms a three-dimensional biofilm structure in the host as well as on human catheter materials under suitable conditions. H3VCTG null (hht1/hht1) cells of C. albicans are viable but produce more robust biofilms than wild-type cells in both in vitro and in vivo conditions. Indeed, a comparative transcriptome analysis of planktonic and biofilm cells reveals that the biofilm circuitry is significantly altered in H3VCTG null cells. H3VCTG binds more efficiently to the promoters of many biofilm-related genes in the planktonic cells than during biofilm growth, whereas the binding of the core canonical histone H3 on the corresponding promoters largely remains unchanged. Furthermore, biofilm defects associated with master regulators, namely, biofilm and cell wall regulator 1 (Bcr1), transposon enhancement control 1 (Tec1), and non-dityrosine 80 (Ndt80), are significantly rescued in cells lacking H3VCTG. The occupancy of the transcription factor Bcr1 at its cognate promoter binding sites was found to be enhanced in the absence of H3VCTG in the planktonic form of growth resulting in enhanced transcription of biofilm-specific genes. Further, we demonstrate that co-occurrence of valine and serine at the 31st and 32nd positions in H3VCTG, respectively, is essential for its function. Taken together, we show that even in a unicellular organism, differential gene expression patterns are modulated by the relative occupancy of the specific histone H3 type at the chromatin level.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/genética , Histonas/metabolismo , Candidíase/microbiologia , Cromatina/genética , Cromatina/metabolismo , Proteínas Fúngicas/metabolismo , Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Histonas/genética , Humanos , Fatores de Transcrição/metabolismo
13.
Molecules ; 24(3)2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736345

RESUMO

Evidences from more than three decades of work support the function of non-duplex DNA structures called G-quadruplex (G4) in important processes like transcription and replication. In addition, G4 structures have been studied in connection with DNA base modifications and chromatin/nucleosome arrangements. Recent work, interestingly, shows promise of G4 structures, through interaction with G4 structure-interacting proteins, in epigenetics-in both DNA and histone modification. Epigenetic changes are found to be intricately associated with initiation as well as progression of cancer. Multiple oncogenes have been reported to harbor the G4 structure at regulatory regions. In this context, G4 structure-binding ligands attain significance as molecules with potential to modify the epigenetic state of chromatin. Here, using examples from recent studies we discuss the emerging role of G4 structures in epigenetic modifications and, therefore, the promise of G4 structure-binding ligands in epigenetic therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Epigênese Genética/efeitos dos fármacos , Quadruplex G , Ligantes , Antineoplásicos/uso terapêutico , Cromatina/química , Cromatina/efeitos dos fármacos , Cromatina/genética , DNA/química , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ligação Proteica , RNA/química , Relação Estrutura-Atividade , Telômero/química , Telômero/efeitos dos fármacos , Telômero/genética
14.
Trends Genet ; 35(2): 129-144, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30527765

RESUMO

The role of non-duplex DNA, the guanine-quadruplex structure in particular, is becoming widely appreciated. Increasing evidence in the last decade implicates quadruplexes in important processes such as transcription and replication. Interestingly, more recent work suggests roles for quadruplexes, in association with quadruplex-interacting proteins, in epigenetics through both DNA and histone modifications. Here, we review the effect of the quadruplex structure on post-replication epigenetic memory and quadruplex-induced promoter DNA/histone modifications. Furthermore, we highlight the epigenetic state of the telomerase promoter where quadruplexes could play a key regulatory role. Finally, we discuss the possibility that DNA structures such as quadruplexes, within a largely duplex DNA background, could act as molecular anchors for locally induced epigenetic modifications.


Assuntos
DNA/genética , Epigênese Genética/genética , Quadruplex G , Guanina/metabolismo , Regiões Promotoras Genéticas , Telomerase/genética
15.
PLoS Genet ; 14(11): e1007782, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30439955

RESUMO

Telomere-binding proteins constituting the shelterin complex have been studied primarily for telomeric functions. However, mounting evidence shows non-telomeric binding and gene regulation by shelterin factors. This raises a key question-do telomeres impact binding of shelterin proteins at distal non-telomeric sites? Here we show that binding of the telomere-repeat-binding-factor-2 (TRF2) at promoters ~60 Mb from telomeres depends on telomere length in human cells. Promoter TRF2 occupancy was depleted in cells with elongated telomeres resulting in altered TRF2-mediated transcription of distal genes. In addition, histone modifications-activation (H3K4me1 and H3K4me3) as well as silencing marks (H3K27me3)-at distal promoters were telomere length-dependent. These demonstrate that transcription, and the epigenetic state, of telomere-distal promoters can be influenced by telomere length. Molecular links between telomeres and the extra-telomeric genome, emerging from findings here, might have important implications in telomere-related physiology, particularly ageing and cancer.


Assuntos
Epigênese Genética , Regiões Promotoras Genéticas , Telômero/genética , Telômero/metabolismo , Transcrição Gênica , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Expressão Gênica , Genoma Humano , Código das Histonas/genética , Código das Histonas/fisiologia , Humanos , Ligação Proteica , Complexo Shelterina , Homeostase do Telômero/genética , Homeostase do Telômero/fisiologia , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
16.
Cell Rep ; 24(4): 947-961.e7, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30044990

RESUMO

Mutations in BLM helicase predispose Bloom syndrome (BS) patients to a wide spectrum of cancers. We demonstrate that MIB1-ubiquitylated BLM in G1 phase functions as an adaptor protein by enhancing the binding of transcription factor c-Jun and its E3 ligase, Fbw7α. BLM enhances the K48/K63-linked ubiquitylation on c-Jun, thereby enhancing the rate of its subsequent degradation. Functionally defective Fbw7α mutants prevalent in multiple human cancers are reactivated by BLM. However, BS patient-derived BLM mutants cannot potentiate Fbw7α-dependent c-Jun degradation. The decrease in the levels of c-Jun in cells expressing BLM prevents effective c-Jun binding to 2,584 gene promoters. This causes decreases in the transcript and protein levels of c-Jun targets in BLM-expressing cells, resulting in attenuated c-Jun-dependent effects during neoplastic transformation. Thus, BLM carries out its function as a tumor suppressor by enhancing c-Jun turnover and thereby preventing its activity as a proto-oncogene.


Assuntos
Proteína 7 com Repetições F-Box-WD/metabolismo , Genes jun , Proteínas Proto-Oncogênicas c-jun/metabolismo , RecQ Helicases/metabolismo , Animais , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Carcinogênese , Proteína 7 com Repetições F-Box-WD/genética , Fase G1 , Células HCT116 , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Mutação , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-jun/genética , RecQ Helicases/genética , Ubiquitinação
17.
Biochemistry ; 57(16): 2317-2324, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29589913

RESUMO

Telomere repeat binding factor 2 (TRF2) is critical for the protection of chromosome ends. Mounting evidence suggests that TRF2 associates with extratelomeric sites and TRF2 functions may not be limited to telomeres. Here, we show that the PCGF3 promoter harbors a sequence capable of forming the DNA secondary structure G-quadruplex motif, which is required for binding of TRF2 at the PCGF3 promoter. We demonstrate that promoter binding by TRF2 mediates PCGF3 promoter activity, and both the N-terminal and C-terminal domains of TRF2 are necessary for promoter activity. Altogether, this shows for the first time that a telomere binding factor may regulate a component of the polycomb group of proteins.


Assuntos
Cromossomos/genética , Proteínas do Grupo Polycomb/genética , Proteínas de Ligação a Telômeros/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética , Sítios de Ligação , Cromossomos/química , Quadruplex G , Humanos , Proteínas do Grupo Polycomb/química , Regiões Promotoras Genéticas , Ligação Proteica , Telômero/química , Telômero/genética , Proteínas de Ligação a Telômeros/química , Proteína 2 de Ligação a Repetições Teloméricas/química
18.
Hum Genomics ; 12(1): 8, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29458419

RESUMO

Over the last 15 years, development of chromosome conformation capture (3C) and its subsequent high-throughput variants in conjunction with the fast development of sequencing technology has allowed investigators to generate large volumes of data giving insights into the spatial three-dimensional (3D) architecture of the genome. This huge data has been analyzed and validated using various statistical, mathematical, genomics, and biophysical tools in order to examine the chromosomal interaction patterns, understand the organization of the chromosome, and find out functional implications of the interactions. This review summarizes the data generated by several large-scale high-throughput chromosome conformation capture studies and the functional implications obtained from the data analyses. We also discuss emerging results on factors (both CCCTC binding factor (CTCF) related and CTCF independent) that could contribute to looping interactions.


Assuntos
Big Data , Genoma Humano/genética , Genômica/estatística & dados numéricos , Fator de Ligação a CCCTC/genética , Montagem e Desmontagem da Cromatina , Cromossomos/genética , Genômica/tendências , Humanos
19.
Lab Invest ; 98(2): 175-181, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29083410

RESUMO

NM23/NDPK proteins have been studied for their metastasis suppressor role but the molecular pathways involved in this process are not very vivid. Nucleotide binding and kinase activities of NM23 proteins implicated in anti-metastatic effects have been widely studied. In addition to these, transcriptional regulation adds another arm to the versatility of NM23 proteins that together with the other functions may contribute to better understanding of underlying mechanisms. In this review we discuss emerging reports describing the role of NM23 proteins in gene regulation and chromatin modulation in association with other factors or on their own.


Assuntos
Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica/genética , Neoplasias/genética , Núcleosídeo-Difosfato Quinase/genética , Animais , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Neoplasias/enzimologia , Neoplasias/patologia , Núcleosídeo-Difosfato Quinase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Sci Rep ; 7(1): 11541, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912501

RESUMO

We observed extra-telomeric binding of the telomere repeat binding factor TRF2 within the promoter of the cyclin-dependent kinase CDKNIA (p21/CIP1/WAF1). This result in TRF2 induced transcription repression of p21. Interestingly, p21 repression was through engagement of the REST-coREST-LSD1-repressor complex and altered histone marks at the p21 promoter in a TRF2-dependent fashion. Furthermore, mutational analysis shows p21 repression requires interaction of TRF2 with a p21 promoter G-quadruplex. Physiologically, TRF2-mediated p21 repression attenuated drug-induced activation of cellular DNA damage response by evading G2/M arrest in cancer cells. Together these reveal for the first time role of TRF2 in REST- repressor complex mediated transcription repression.


Assuntos
Proteínas Correpressoras/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Repressão Epigenética , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Linhagem Celular , Humanos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...