Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 58(25): 6720-6724, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503637

RESUMO

A diode-pumped, air-cooled, all-fiber, quasi-continuous-wave thulium laser at an operating wavelength of 1.94 µm has been designed to study the performance of the laser parameter on the rate of fragmentation and its dependence on stone composition, fragmented particle size, as well as the retropulsion effect. The optimized laser cavity with an active fiber core/cladding diameter of 10/130 µm under a counter-propagating pump provides a stable laser power of 30 W at a slope efficiency of 50% and wall plug efficiency of 17%. The rate of fragmentation along with the retropulsion effect has been studied with human calcium oxalate monohydrate (COM) urinary stones (N=36) of different composition by using the designed laser and 200-µm-core low OH silica delivery fiber. The thulium fiber laser setting of 2.7 J pulse energy at the pulse rate of 10 Hz, pulse width of 90 ms, and peak power of 30 W is successful in breaking human COM stones in a controlled manner at a fragmentation rate of 0.8±0.4 mg/s, with almost uniform fragments of particle size less than 1.6 mm. During the stone fragmentation, the stone displacement (retropulsion effect) is less than 15 mm, even for the fragmented stone mass of 15±5 mg.

2.
Opt Lett ; 44(9): 2161-2164, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042173

RESUMO

In this Letter, experimental observation of dissipative rogue waves (DRWs) due to spectral filtering induced pulse instabilities in a mode-locked ytterbium (Yb) fiber laser has been presented. A semiconductor saturable absorber mirror was used to mode-lock the linear cavity laser and a chirped fiber Bragg grating (CFBG) was used for dispersion management, which also acted as a spectral filter and output coupler. Under stable conditions, the cavity delivered dispersion managed dissipative solitons of 447 fs duration and 0.69 nJ pulse energy at 10.19 MHz repetition rate with uniform intensity distribution over a long time span. As the spectral width increased with pump power, random intensity fluctuations were observed in the pulse train due to the filtering effect of the CFBG. Employing a dispersive Fourier transform by stretching the output pulse train in time allowed the existence of DRWs more than 4 times stronger than the significant wave height to be observed. Further increments of pump power led to a stable multi-pulsing state.

3.
Appl Opt ; 57(13): 3546-3550, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29726532

RESUMO

A gain-switched all-fiber thulium laser at 2 µm with high repetition rate has been demonstrated under a hybrid pumping scheme combined of a pulsed pump at 1.56 µm and CW pump at 793 nm. The in-band pulsed pump at 1.56 µm triggers the gain-switching pulses while the CW pump at 793 nm facilitates the energy storage. Therefore, the seed cavity delivers high energy pulses allowing the elimination of multistage amplification. Such hybrid pump configuration is effective for generating gain-switched pulses of high average power with better slope efficiency and pulse width of a few hundreds of a nanosecond. The optimized cavity under such hybrid pump configuration provides output power of 5.92 W from the gain-switched oscillator with slope efficiency of 60% and pulse width of 300 ns at a repetition rate of 344 kHz. Maximum pulse energy of 17.2 µJ and peak power of 53.9 W has been achieved at this repetition rate. Stable gain-switched pulses at reduced pump pulse energy have been achieved by the use of a CW pump at 793 nm. This novel pump configuration facilitates gain switch at higher repetition rates where enough pump pulse energy may not be available. The gain-switched laser also operates at 520 kHz and 1.3 MHz repetition rate by changing the 1.56 µm pulsed pump and cavity length.

4.
Appl Opt ; 57(5): 1225-1230, 2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29469868

RESUMO

In this paper, we propose an all-normal-dispersion ytterbium-fiber laser with a novel ring cavity architecture having two nonlinear amplifying loop mirrors (NALM) as saturable absorbers, capable of delivering distinctly different pulses with adjustable features. By optimizing the loop lengths of the individual NALMs, the cavity can be operated to deliver Q-switched mode-locked (Q-ML) pulse bunches with adjustable repetition rates, mode-locked pulses in dissipative soliton resonance (DSR) regime or noise-like pulse (NLP) regime with tunable pulse width. The DSR pulses exhibit characteristic narrowband spectrum, while the NLPs exhibit large broadband spectrum. The operation regime of the laser can be controlled by adjusting the amplifier pump powers and the polarization controllers. To the best of the authors' knowledge, this is the first demonstration of a single mode-locked cavity where narrowband DSR pulses and broadband NLPs alongside Q-ML pulse bunches can be selectively generated by employing two NALMs.

5.
Opt Lett ; 42(13): 2471-2474, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957262

RESUMO

A dissipative soliton resonance (DSR) mode-locked Er:Yb fiber laser has been used to pump a thulium fiber laser to generate gain-switched pulses at high repetition rates. Here 412 ns long DSR pulses with a center wavelength of around 1.56 µm at a repetition rate of 410 kHz have been fed to a thulium fiber laser, resulting in generation of gain-switched pulses at 1.94 µm. The minimum pulse width achieved was 256 ns with an average power of 4.6 W at 66% slope efficiency. Gain-switched pulses at 520 kHz and 750 kHz were generated through changing the pump pulse repetition rate by modifying the DSR cavity. To the best of our knowledge, this is the first demonstration of a high repetition rate gain-switched thulium fiber laser pumped by a DSR mode-locked fiber laser. As DSR pulses can be generated with high seed average power and energy independent of the operating wavelength regime as well as mode-locking technique, the proposed method can be applied to generate gain-switched pulses at high repetition rates and various wavelengths without the need of any optical or electrical modulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...