Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(12): e81870, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339975

RESUMO

Modulation of mitochondrial function through inhibiting respiratory complex I activates a key sensor of cellular energy status, the 5'-AMP-activated protein kinase (AMPK). Activation of AMPK results in the mobilization of nutrient uptake and catabolism for mitochondrial ATP generation to restore energy homeostasis. How these nutrient pathways are affected in the presence of a potent modulator of mitochondrial function and the role of AMPK activation in these effects remain unclear. We have identified a molecule, named R419, that activates AMPK in vitro via complex I inhibition at much lower concentrations than metformin (IC50 100 nM vs 27 mM, respectively). R419 potently increased myocyte glucose uptake that was dependent on AMPK activation, while its ability to suppress hepatic glucose production in vitro was not. In addition, R419 treatment of mouse primary hepatocytes increased fatty acid oxidation and inhibited lipogenesis in an AMPK-dependent fashion. We have performed an extensive metabolic characterization of its effects in the db/db mouse diabetes model. In vivo metabolite profiling of R419-treated db/db mice showed a clear upregulation of fatty acid oxidation and catabolism of branched chain amino acids. Additionally, analyses performed using both (13)C-palmitate and (13)C-glucose tracers revealed that R419 induces complete oxidation of both glucose and palmitate to CO2 in skeletal muscle, liver, and adipose tissue, confirming that the compound increases mitochondrial function in vivo. Taken together, our results show that R419 is a potent inhibitor of complex I and modulates mitochondrial function in vitro and in diabetic animals in vivo. R419 may serve as a valuable molecular tool for investigating the impact of modulating mitochondrial function on nutrient metabolism in multiple tissues and on glucose and lipid homeostasis in diabetic animal models.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Mitocôndrias Hepáticas/metabolismo , Células Musculares/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Diabetes Mellitus Experimental/patologia , Ativação Enzimática/efeitos dos fármacos , Ácidos Graxos/metabolismo , Glucose/metabolismo , Células Hep G2 , Humanos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Camundongos , Mitocôndrias Hepáticas/patologia , Células Musculares/patologia , Oxirredução/efeitos dos fármacos , Palmitatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia
2.
J Immunol ; 181(11): 7593-605, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19017948

RESUMO

Drak2 is a serine/threonine kinase expressed in T and B cells. The absence of Drak2 renders T cells hypersensitive to suboptimal stimulation, yet Drak2(-/-) mice are enigmatically resistant to experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. We show in this study that Drak2(-/-) mice were also completely resistant to type 1 diabetes when bred to the NOD strain of mice that spontaneously develop autoimmune diabetes. However, there was not a generalized suppression of the immune system, because Drak2(-/-) mice remained susceptible to other models of autoimmunity. Adoptive transfer experiments revealed that resistance to disease was intrinsic to the T cells and was due to a loss of T cell survival under conditions of chronic autoimmune stimulation. Importantly, the absence of Drak2 did not alter the survival of naive T cells, memory T cells, or T cells responding to an acute viral infection. These experiments reveal a distinction between the immune response to persistent self-encoded molecules and transiently present infectious agents. We present a model whereby T cell survival depends on a balance of TCR and costimulatory signals to explain how the absence of Drak2 affects autoimmune disease without generalized suppression of the immune system.


Assuntos
Autoimunidade/imunologia , Diabetes Mellitus Tipo 1/imunologia , Encefalomielite Autoimune Experimental/imunologia , Ativação Linfocitária/imunologia , Esclerose Múltipla/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Linfócitos T/imunologia , Transferência Adotiva , Animais , Autoimunidade/genética , Linfócitos B/enzimologia , Linfócitos B/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Diabetes Mellitus Tipo 1/enzimologia , Encefalomielite Autoimune Experimental/enzimologia , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Memória Imunológica/genética , Memória Imunológica/imunologia , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Esclerose Múltipla/enzimologia , Especificidade de Órgãos/imunologia , Proteínas Serina-Treonina Quinases/genética , Linfócitos T/enzimologia
3.
J Bacteriol ; 186(10): 3214-23, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15126484

RESUMO

Salmonella enterica serovar Typhi has a 134-kb island of DNA identified as salmonella pathogenicity island 7 (SPI7), inserted between pheU and 'pheU (truncated), two genes for tRNA(Phe). SPI7 has genes for Vi exopolysaccharide, for type IVB pili, for putative conjugal transfer, and for sopE bacteriophage. Pulsed-field gel electrophoresis following digestion with the endonuclease I-CeuI, using DNA from a set of 120 wild-type strains of serovar Typhi assembled from several sources, identified eight strains in which the I-CeuI G fragment, which contains SPI7, had a large deletion. In addition, agglutination tests with Vi antiserum and phage typing with Vi phages show that all eight strains are Vi negative. We therefore tested these strains for deletion of SPI7 by multiplex PCR, by microarray analysis, and by sequencing of PCR amplicons. Data show that seven of the eight strains are precise deletions of SPI7: a primer pair flanking SPI7 results in a PCR amplicon containing a single pheU gene; microarrays show that all SPI7 genes are deleted. Two of the strains produce amplicons which have A derived from pheU at bp 27, while five have C derived from 'pheU at this position; thus, the position of the crossover which results in the deletion can be inferred. The deletion in the eighth strain, TYT1669, removes 175 kb with junction points in genes STY4465 and STY4664; the left junction of SPI7 and adjacent genes, as well as part of SPI7 including the viaB operon for Vi exopolysaccharide, was removed, while the right junction of SPI7 was retained. We propose that these deletions occurred during storage following isolation.


Assuntos
Antígenos de Bactérias/genética , Deleção de Genes , Polissacarídeos Bacterianos/genética , Aminoacil-RNA de Transferência/genética , Salmonella typhi/genética , Salmonella typhi/patogenicidade , Sequência de Bases , DNA Bacteriano/química , Eletroforese em Gel de Campo Pulsado , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...