Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1633: 461635, 2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33128974

RESUMO

Viral clearance is an important performance metric for the downstream process of monoclonal antibodies (mAbs) due to its impact on patient safety. Anion exchange chromatography (AEX) has been well-accepted in the industry as one of the workhorse techniques for removing viruses, and is considered to be able to achieve high log clearance values under most operating conditions. However, it is not uncommon for viral clearance results on AEX to fall below the desired level despite operating under conditions that should achieve high clearance levels according to conventional wisdom of how this mode of chromatography operates. In this study, a design of experiment (DoE) approach was used to develop a more fundamental understanding of viral clearance during AEX chromatography using Minute Virus of Mice (MVM) on POROS HQ resin. Load pH, conductivity and virus concentration were evaluated as design factors for three mAbs with varying physical and chemical properties. The hydrophobicity and surface charge distributions of the molecules were found to be the most significant factors in influencing viral clearance performance, and the viral clearance trends did not seem to fit with conventional wisdom. To explain this seemingly unconventional behavior, we propose a new mechanism that suggests that interactions between the mAb and the virus have a major contribution on retention of the virus on the resin. This furthered understanding may help improve the predictability, performance and robustness of viral clearance during AEX chromatography.


Assuntos
Anticorpos Monoclonais/metabolismo , Cromatografia por Troca Iônica/normas , Vírus Miúdo do Camundongo/metabolismo , Vírus/metabolismo , Animais , Ânions/química , Anticorpos Monoclonais/química , Camundongos , Vírus/química
2.
Biotechnol Bioeng ; 111(8): 1587-94, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24554490

RESUMO

Membrane chromatography (MC) systems are finding increasing use in downstream processing trains for therapeutic proteins due to the unique mass-transfer characteristics they provide. As a result, there is increased need for model-based methods to scale-up MC units using data collected on a scaled-down unit. Here, a strategy is presented for MC unit scale-up using the zonal rate model (ZRM). The ZRM partitions an MC unit into virtual flow zones to account for deviations from ideal plug-flow behavior. To permit scale-up, it is first configured for the specific device geometry and flow profiles within the scaled-down unit so as to achieve decoupling of flow and binding related non-idealities. The ZRM is then configured for the preparative-scale unit, which typically utilizes markedly different flow manifolds and membrane architecture. Breakthrough is first analyzed in both units under non-binding conditions using an inexpensive tracer to independently determine unit geometry related parameters of the ZRM. Binding related parameters are then determined from breakthrough data on the scaled-down MC capsule to minimize sample requirements. Model-based scale-up may then be performed to predict band broadening and breakthrough curves on the preparative-scale unit. Here, the approach is shown to be valid when the Pall XT140 and XT5 capsules serve as the preparative and scaled-down units, respectively. In this case, scale-up is facilitated by our finding that the distribution of linear velocities through the membrane in the XT140 capsule is independent of the feed flow rate and the type of protein transmitted. Introduction of this finding into the ZRM permits quantitative predictions of breakthrough over a range of industrially relevant operating conditions.


Assuntos
Cromatografia/instrumentação , Membranas Artificiais , Animais , Bovinos , Desenho de Equipamento , Cinética , Modelos Químicos , Ovalbumina/isolamento & purificação , Soroalbumina Bovina/isolamento & purificação
3.
Biotechnol Bioeng ; 111(3): 552-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24166014

RESUMO

Isoelectric chromatofocusing (ICF), a mode of chromatography by which proteins are separated based on changes in their charge state with pH, is widely used at analytical scales and finding increasing interest in biologics manufacturing due to its exceptional resolving power. Here, a method is described for using simple monoprotic and diprotic buffers to create stable mobile phases for sample loading on a strong anion exchange column and for achieving an elution pH gradient of desired shape covering any pH range from pH 10.0 to 3. The buffers used are selected to satisfy cost constraints, and to permit facile detection of eluted biologics by UV spectroscopy and mass spectrometry. The method exploits a new model described here that combines multiple-chemical and adsorption-equilibria theory to enable in silico tailoring of elution pH profiles using mixtures of these simple buffers. It is shown to provide a versatile platform for optimizing and conducting ICF of protein mixtures on strong anion exchange media.


Assuntos
Cromatografia por Troca Iônica/métodos , Resinas de Troca Iônica , Focalização Isoelétrica/métodos , Misturas Anfolíticas , Soluções Tampão
4.
Biotechnol Bioeng ; 111(5): 925-36, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24293057

RESUMO

Experimental data are combined with classic theories describing electrolytes in solution and at surfaces to define the primary mechanisms influencing protein retention and elution during isoelectric chromatofocusing (ICF) of proteins and protein mixtures. Those fundamental findings are used to derive a new model to understand and predict elution times of proteins during ICF. The model uses a modified form of the steric mass action (SMA) isotherm to account for both ion exchange and isoelectric focusing contributions to protein partitioning. The dependence of partitioning on pH is accounted for through the characteristic charge parameter m of the SMA isotherm and the application of Gouy-Chapman theory to define the dependence of the equilibrium binding constant Kbi on both m and ionic strength. Finally, the effects of changes in matrix surface pH on protein retention are quantified through a Donnan equilibrium type model. By accounting for isoelectric focusing, ion binding and exchange, and surface pH contributions to protein retention and elution, the model is shown to accurately capture the dependence of protein elution times on column operating conditions.


Assuntos
Cromatografia por Troca Iônica/métodos , Focalização Isoelétrica/métodos , Proteínas/isolamento & purificação , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...