Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0298514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408078

RESUMO

The use of fungicides to manage disease has led to multiple environmental externalities, including resistance development, pollution, and non-target mortality. Growers have limited options as legacy chemistry is withdrawn from the market. Moreover, fungicides are generally labeled for traditional soil-based production, and not for liquid culture systems. Biocontrol agents for disease management are a more sustainable and environmentally friendly alternative to conventional agroprotectants. Pythium ultimum is a soil borne oomycete plant pathogen with a broad taxonomic host range exceeding 300 plants. Cucumber seedlings exposed to P. ultimum 1 day after a protective inoculation with bacterial endophyte accession IALR1619 (Pseudomonas sp.) recorded 59% survival; with the control assessed at 18%. When the pathogen was added 5 days post endophyte inoculation, 74% of the seedlings treated survived, compared to 36% of the control, indicating a longer-term effect of IALR1619. Under hydroponic conditions, IALR1619 treated leaf type lettuce cv. 'Cristabel' and Romaine cv. 'Red Rosie' showed 29% and 42% higher shoot fresh weight compared to their controls, respectively. Similar results with less growth decline were observed for a repeat experiment with IALR1619. Additionally, an experiment on hydroponic lettuce in pots with perlite was carried out with a mixture of P. ultimum and P. dissotocum after IALR1619 inoculation. The endophyte treated 'Cristabel' showed fresh weight gain, but the second cultivar 'Pensacola' yielded no increase. In summary, the endophyte IALR1619 provided short term as well as medium-term protection against Pythium blight in cucumber seedlings and may be used as an alternative to conventional fungicides in a greenhouse setting. This study also demonstrated the potential of ALR1619 as a biocontrol agent against Pythium blight in hydroponic lettuce.


Assuntos
Cucumis sativus , Fungicidas Industriais , Pythium , Pseudomonas , Cucumis sativus/microbiologia , Lactuca , Hidroponia , Plântula , Plantas , Solo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Microorganisms ; 11(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36838341

RESUMO

Controlled environment agriculture hydroponic systems grow plants year-round without restriction from outside environmental conditions. In order to further improve crop yield, plant growth-promoting bacteria were tested on hydroponically grown lettuce (Lactuca sativa) plants. From our bacterial endophyte library, we found one bacterium, Pseudomonas psychrotolerans IALR632, that is promising in promoting lettuce growth in multiple hydroponic systems. When Green Oakleaf lettuce seeds were inoculated with IALR632 during germination, IALR632 significantly increased lateral root development by 164%. When germinated seedlings were inoculated with IALR632 and then transplanted to different hydroponic systems, shoot and root fresh weights of Green Oakleaf increased by 55.3% and 17.2% in a nutrient film technique (NFT) system in the greenhouse, 13.5% and 13.8% in an indoor vertical NFT system, and 15.3% and 13.6% in a deep water cultivation (DWC) system, respectively. IALR632 also significantly increased shoot fresh weights of Rex by 33.9%, Red Oakleaf by 21.0%, Red Sweet Crisp by 15.2%, and Nancy by 29.9%, as well as Red Rosie by 8.6% (no significant difference). Inoculation of IALR632-GFP and subsequent analysis by confocal microscopy demonstrated the endophytic nature and translocation from roots to shoots. The results indicate that P. psychrotolerans IALR632 has a potential application in hydroponically grown lettuce plants.

3.
Microorganisms ; 9(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576829

RESUMO

Phosphate is one of the most important nutrients for plant growth and development, and only 0.1% of the phosphate in soils is available to plants. Currently, the use of excess phosphate fertilizer has caused surface and ground water pollution and water eutrophication, resulting in algal blooms in lakes and oceans. Therefore, it is imperative to explore alternative ways to solve these problems for sustainable agricultural production and improvement of soil fertility, while protecting the environment. Microorganisms from the rhizosphere and within plants are able to solubilize insoluble soil phosphate, making it available to plants. Five high phosphate solubilizing bacteria from our bacterial endophyte library were chosen for this study and identified as Pantoea vagans IALR611, Pseudomonas psychrotolerans IALR632, Bacillus subtilis IALR1033, Bacillus safensis IALR1035 and Pantoea agglomerans IALR1325. All five bacteria significantly promoted tall fescue growth in vitro. Greenhouse experiments showed that IALR1325 significantly promoted pepper and tomato growth, and IALR632 was the best in promoting tomato growth. In addition, all these bacteria had extracellular acid phosphatase and phytase activities. One of the mechanisms for phosphate solubilization by bacteria is pH reduction caused by gluconic acid production. Our results indicate that P. agglomerans IALR1325 is a promising bacterium for future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...