Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20242172

RESUMO

1In the wake of the rapid surge in the Covid-19 infected cases seen in Southern and West-Central USA in the period of June-July 2020, there is an urgent need to develop robust, data-driven models to quantify the effect which early reopening had on the infected case count increase. In particular, it is imperative to address the question: How many infected cases could have been prevented, had the worst affected states not reopened early? To address this question, we have developed a novel Covid-19 model by augmenting the classical SIR epidemiological model with a neural network module. The model decomposes the contribution of quarantine strength to the infection timeseries, allowing us to quantify the role of quarantine control and the associated reopening policies in the US states which showed a major surge in infections. We show that the upsurge in the infected cases seen in these states is strongly co-related with a drop in the quarantine/lockdown strength diagnosed by our model. Further, our results demonstrate that in the event of a stricter lockdown without early reopening, the number of active infected cases recorded on 14 July could have been reduced by more than 40% in all states considered, with the actual number of infections reduced being more than 100, 000 for the states of Florida and Texas. As we continue our fight against Covid-19, our proposed model can be used as a valuable asset to simulate the effect of several reopening strategies on the infected count evolution; for any region under consideration.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20160697

RESUMO

1We have developed a globally applicable diagnostic Covid-19 model by augmenting the classical SIR epidemiological model with a neural network module. Our model does not rely upon previous epidemics like SARS/MERS and all parameters are optimized via machine learning algorithms employed on publicly available Covid-19 data. The model decomposes the contributions to the infection timeseries to analyze and compare the role of quarantine control policies employed in highly affected regions of Europe, North America, South America and Asia in controlling the spread of the virus. For all continents considered, our results show a generally strong correlation between strengthening of the quarantine controls as learnt by the model and actions taken by the regions respective governments. Finally, we have hosted our quarantine diagnosis results for the top 70 affected countries worldwide, on a public platform, which can be used for informed decision making by public health officials and researchers alike. Article Summary LineData-driven epidemiological model to quantify and compare quarantine control policies in controlling COVID-19 spread in Europe, North America, South America and Asia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...