Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768447

RESUMO

The cycloaddition of CO2 into epoxides to form cyclic carbonates is a highly sought-after reaction for its potential to both reduce and use CO2, which is a greenhouse gas. In this paper, we present experimental and theoretical studies and a mechanistic approach for three catalytic systems. First, as Lewis base catalysts, imidazole and its derivatives, then as a Lewis acid catalyst, ZnI2 alone, and after that, the combined system of ZnI2 and imidazole. In the former, we aimed to discover the reasons for the varied reactivities of five Lewis base catalysts. Furthermore, we succeeded in reproducing the experimental results and trends using DFT. To add, we emphasized the importance of non-covalent interactions and their role in reactivity. In our case, the presence of a hydrogen bond was a key factor in decreasing the reactivity of some catalysts, thus leading to lower conversion rates. Finally, mechanistically understanding this 100% atom economy reaction can aid experimental chemists in designing better and more efficient catalytic systems.


Assuntos
Dióxido de Carbono , Bases de Lewis , Reação de Cicloadição , Compostos de Epóxi , Imidazóis
2.
Chemphyschem ; 19(21): 2938-2946, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30238613

RESUMO

A new Zn-N4 -Schiff base L=((±)-trans-N,N'-Bis(2-aminobenzylidene)-1,2-diaminocyclohexane) complex was synthesized and fully characterized, showing an unexpected self-assembled double-stranded helicate structure. The X-ray crystal analysis of the Zn2 L2 complex ((C40 H44 N8 Zn2 ,CH2 Cl2 , a=14.2375(3) Å, b=16.7976(4) Å, c=16.1613(4) Å, monoclinic, P21 /n, Z=4) shows a centrosymmetrical structure in which zinc atoms are in distorted tetrahedral environments, revealing an M- (R, R) left-handed helicity in its asymmetric unit. However, it was observed that this dinuclear complex is thermodynamically unstable in the presence of small water amounts and undergoes demetallation into free N4-Schiff base ligand and ZnO nanoparticles. This hydrolysis process was thoroughly identified and monitored through detailed 1 H NMR, DOSY NMR analysis. The reaction mechanism of this demetallation event was elucidated by using the DFT method, involving an activation energy smaller than 13 kcal/mol. Besides, a theoretical mechanism of the demetallation process is given for the first time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...