Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 44(16): 7586-94, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25811861

RESUMO

Neat 3,5-dinitro-1H-1,2,4-triazole was obtained in quantitative yield from potassium 3,5-dinitro-1,2,4-triazolate and sulfuric acid. The compound was purified by sublimation in vacuo at 110 °C. Pure HDNT is a hygroscopic white solid that is impact and friction sensitive and decomposes explosively upon heating to 170 °C. However, the presence of impurities might lower the decomposition temperature and increase the sensitivity of the material. Potassium 3,5-dinitro-1,2,4-triazolate was prepared from commercially available 3,5-diamino-4H-1,2,4-triazole with sodium nitrite and sulfuric acid. The synthesis of HDNT from 2-cyanoguanidine and hydrazine hydrate without isolation and purification of the 3,5-diamino-4H-1,2,4-triazole intermediate can result in the formation of azidotriazole impurities. A triclinic and a monoclinic polymorph of 3,5-dinitro-1H-1,2,4-triazole were found by X-ray structure determination. In addition, the crystal structure of the hydrate (HDNT)3·4H2O, as well as those of several HDNT impurities and decomposition products were obtained.

2.
Dalton Trans ; 44(7): 2978-88, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25615958

RESUMO

Salts of 3,5-dinitro-1H-1,2,4-triazole, a building block for energetic materials, have been prepared and fully characterized. Most of the studied salts exhibit high thermal stability and very low shock and friction sensitivities. 3,5-Dinitro-1,2,4-triazolates with the nitrogen-rich ammonium, guanidinium, aminoguanidinium, and aminotetrazolium cations are energetic and have potential for energetic material applications. Salts containing alkali, alkali earth metal, and silver cations exhibit coloured emissions upon combustion while salts with large organic cations such as PPh4(+) and (Ph3P)2N(+) are highly insensitive and can be easily crystallized.

3.
Inorg Chem ; 40(17): 4404-8, 2001 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-11487348

RESUMO

In the superacidic HF/SbF(5) system, methyl trifluoromethyl ether forms at -78 degrees C the new tertiary oxonium salt [(CH(3))(2)OCF(3)](+)[Sb(2)F(11)](-), which was characterized by Raman and multinuclear NMR spectroscopy and its crystal structure. The same oxonium salt was also obtained by methylation of CH(3)OCF(3) with CH(3)F and SbF(5) in HF solution at -30 to -10 degrees C. Replacement of one methyl group in the trimethyloxonium cation by the bulkier and more electronegative trifluoromethyl group increases the remaining O-CH(3) bond lengths by 0.037(1) A and the sum of the C-O-C bond angles by about 4.5 degrees. Methylation of CH(3)OCF(CF(3))(2) with CH(3)F in HF/SbF(5) solution at -30 degrees C produces [(CH(3))(2)OCF(CF(3))(2)](+)[Sb(2)F(11)](-). The observed structure and vibrational and NMR spectra were confirmed by theoretical studies at the B3LYP/6-311++G(2d,2p) and the MP2/6-311++G(2d,p) levels.

4.
J Am Chem Soc ; 123(26): 6308-13, 2001 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-11427055

RESUMO

The new N5+ salt, N5+ SbF(6)(-), was prepared from N(2)F(+)SbF(6)(-) and HN(3) in anhydrous HF solution. The white solid is surprisingly stable, decomposing only at 70 degrees C, and is relatively insensitive to impact. Its vibrational spectrum exhibits all nine fundamentals with frequencies that are in excellent agreement with the theoretical calculations for a five-atomic V-shaped ion of C(2)(v)symmetry. The N5+ Sb(2)F(11)(-) salt was also prepared, and its crystal structure was determined. The geometry previously predicted for free gaseous N5+ from theoretical calculations was confirmed within experimental error. The Sb(2)F(11)(-) anions exhibit an unusual geometry with eclipsed SbF(4) groups due to interionic bridging with the N5+ cations. The N5+ cation is a powerful one-electron oxidizer. It readily oxidizes NO, NO(2), and Br(2) but fails to oxidize Cl(2), Xe, or O(2).

5.
J Am Chem Soc ; 123(26): 6338-48, 2001 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-11427058

RESUMO

The crystal structure of the 1:1 adduct ClF(5).SbF(5) was determined and contains discrete ClF(4)(+) and SbF(6)(-) ions. The ClF(4)(+) cation has a pseudotrigonal bipyramidal structure with two longer and more ionic axial bonds and two shorter and more covalent equatorial bonds. The third equatorial position is occupied by a sterically active free valence electron pair of chlorine. The coordination about the chlorine atom is completed by two longer fluorine contacts in the equatorial plane, resulting in the formation of infinite zigzag chains of alternating ClF(4)(+) and cis-fluorine bridged SbF(6)(-) ions. Electronic structure calculations were carried out for the isoelectronic series ClF(4)(+), BrF(4)(+), IF(4)(+) and SF(4), SeF(4), TeF(4) at the B3LYP, MP2, and CCSD(T) levels of theory and used to revise the previous vibrational assignments and force fields. The discrepancies between the vibrational spectra observed for ClF(4)(+) in ClF(4)(+)SbF(6)(-) and those calculated for free ClF(4)(+) are largely due to the fluorine bridging that compresses the equatorial F-Cl-F bond angle and increases the barrier toward equatorial-axial fluorine exchange by the Berry mechanism. A computationally simple model, involving ClF(4)(+) and two fluorine-bridged HF molecules at a fixed distance as additional equatorial ligands, was used to simulate the bridging in the infinite chain structure and greatly improved the fit between observed and calculated spectra.

6.
Inorg Chem ; 40(10): 2415-9, 2001 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-11327921

RESUMO

For a compound in a given oxidation state, its oxidizing strength increases from its anion to the neutral parent molecule to its cation. Similarly, an anion is more easily oxidized than its neutral parent molecule, which in turn is more easily oxidized than its cation. This concept was systematically exploited in our search for new superoxidizers. Transition metal fluoride anions were prepared in their highest known oxidation states by high temperature/high pressure fluorinations with elemental fluorine and subsequently converted to their more strongly oxidizing cations by a displacement reaction with a strong Lewis acid. The application of this principle resulted in new syntheses for ClF(6)(+)AsF(6)(-) and BrF(6)(+)AsF(6)(-) using the highly reactive and thermally unstable NiF(3)(+) cation that was prepared from the reaction of the NiF(6)(2)(-) anion with AsF(5) in anhydrous HF. Attempts to prepare the known KrF(+) and ClO(2)F(2)(+) cations and the yet unknown XeF(7)(+) cation by the same method were unsuccessful. The results from this and previous studies show that NiF(3)(+) is a stronger oxidative fluorinator than PtF(6), but whether its oxidizing strength exceeds that of KrF(+) remains unclear. Its failure to oxidize Kr to KrF(+) might have been due to unfavorable reaction conditions. Its failure to oxidize ClO(2)F to ClO(2)F(2)(+), in spite of its favorable oxidizer strength, is attributed to the high Lewis basicity of ClO(2)F which results in a rapid displacement reaction of NiF(3)(+) by ClO(2)F, thus generating the weaker oxidizer NiF(4) and the more difficult to oxidize substrate ClO(2)(+). Therefore, the general applicability of this approach appears to be limited to substrates that exhibit a weaker Lewis basicity than the neutral transition metal parent molecule. Compared to KrF(+)- or PtF(6)-based oxidations, the NiF(3)(+) system offers the advantages of commercially available starting materials and higher yields, but product purification can be more difficult and tedious than for KrF(+).

7.
Inorg Chem ; 40(6): 1303-11, 2001 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-11300833

RESUMO

Recently, room-temperature crystal structures of SO(2)F(-) in its K(+) and Rb(+) salts were published in Z. Anorg. Allg. Chem. 1999, 625, 385 and claimed to represent the first reliable geometries for SO(2)F(-). However, their almost identical S-O and S-F bond lengths and O-S-O and O-S-F bond angles are in sharp contrast to the results from theoretical calculations. To clarify this discrepancy, the new [(CH(3))(2)N](3)SO(+) and the known [N(CH(3))(4)(+)], [(CH(3))(2)N](3)S(+), and K(+) salts of SO(2)F(-) were prepared and their crystal structures studied at low temperatures. Furthermore, the results from previous RHF and MP2 calculations were confirmed at the RHF, B3LYP, and CCSD(T) levels of theory using different basis sets. It is shown that all the SO(2)F(-) salts studied so far exhibit varying degrees of oxygen/fluorine and, in some cases, oxygen-site disorders, with [(CH(3))(2)N](3)SO(+)SO(2)F(-) at 113 K showing the least disorder with r(S-F) - r(S-O) = 17 pm and angle(O-S-O) - angle(F-S-O) = 6 degrees. Refinement of the disorder occupancy factors and extrapolation of the observed bond distances for zero disorder resulted in a geometry very close to that predicted by theory. The correctness of the theoretical predictions for SO(2)F(-) is further supported by the good agreement between the calculated and the experimentally observed vibrational frequencies and their comparison with those of isoelectronic ClO(2)F. A normal coordinate analysis of SO(2)F(-) confirms the weakness of the S-F bond with a stretching force constant of only 1.63 mdyn/A and shows that there is no highly characteristic S-F stretching mode. The S-F stretch strongly couples with the SO(2) deformation modes and is concentrated in the two lowest a' frequencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...