Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Screen ; 20(8): 976-84, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25873558

RESUMO

Our approach aims to optimize postscreening target validation strategies using viral vector-driven RNA interference (RNAi) cell models. The RNAiONE validation platform is an array of plasmid-based expression vectors that each drives tandem expression of the gene of interest (GOI) with one small hairpin RNA (shRNA) from a set of computed candidate sequences. The best-performing shRNA (>85% silencing efficiency) is then integrated in an inducible, all-in-one lentiviral vector to transduce pharmacologically relevant cell types that endogenously express the GOI. VariCHECK is used subsequently to combine the inducible knockdown with an equally inducible rescue of the GOI for ON-target phenotype verification. The complete RNAiONE-VariCHECK system relies on three key elements to ensure high predictability: (1) maximized silencing efficiencies by a focused shRNA validation process, (2) homogeneity of the RNAi cell pools by application of sophisticated viral vector technologies, and (3) exploiting the advantages of inducible expression systems. By using a reversible expression system, our strategy adds critical information to hot candidates from RNAi screens and avoids potential side effects that may be caused by other, irreversible genomic manipulation methods such as transcription activator-like effector nucleases (TALEN) or clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas). This approach will add credibility to top-hit screening candidates and protect researchers from costly misinterpretations early in the preclinical drug development process.


Assuntos
Vetores Genéticos/genética , Lentivirus/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Linhagem Celular , Citometria de Fluxo , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fenótipo , Reprodutibilidade dos Testes
2.
Neuron ; 78(3): 483-97, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23664615

RESUMO

Regulation of neuronal excitability and cardiac excitation-contraction coupling requires the proper localization of L-type Ca²âº channels. We show that the actin-binding protein α-actinin binds to the C-terminal surface targeting motif of α11.2, the central pore-forming Ca(V)1.2 subunit, in order to foster its surface expression. Disruption of α-actinin function by dominant-negative or small hairpin RNA constructs reduces Ca(V)1.2 surface localization in human embryonic kidney 293 and neuronal cultures and dendritic spine localization in neurons. We demonstrate that calmodulin displaces α-actinin from their shared binding site on α11.2 upon Ca²âº influx through L-type channels, but not through NMDAR, thereby triggering loss of Ca(V)1.2 from spines. Coexpression of a Ca²âº-binding-deficient calmodulin mutant does not affect basal Ca(V)1.2 surface expression but inhibits its internalization upon Ca²âº influx. We conclude that α-actinin stabilizes Ca(V)1.2 at the plasma membrane and that its displacement by Ca²âº-calmodulin triggers Ca²âº-induced endocytosis of Ca(V)1.2, thus providing an important negative feedback mechanism for Ca²âº influx.


Assuntos
Actinina/metabolismo , Canais de Cálcio Tipo L/metabolismo , Calmodulina/metabolismo , Espinhas Dendríticas/metabolismo , Neurônios/metabolismo , Sítios de Ligação , Encéfalo/metabolismo , Endocitose/fisiologia , Células HEK293 , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo
3.
J Biol Chem ; 287(47): 39766-75, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23033479

RESUMO

Voltage-gated Ca(v)2.1 Ca(2+) channels undergo dual modulation by Ca(2+), Ca(2+)-dependent inactivation (CDI), and Ca(2+)-dependent facilitation (CDF), which can influence synaptic plasticity in the nervous system. Although the molecular determinants controlling CDI and CDF have been the focus of intense research, little is known about the factors regulating these processes in neurons. Here, we show that calretinin (CR), a Ca(2+)-binding protein highly expressed in subpopulations of neurons in the brain, inhibits CDI and enhances CDF by binding directly to α(1)2.1. Screening of a phage display library with CR as bait revealed a highly basic CR-binding domain (CRB) present in multiple copies in the cytoplasmic linker between domains II and III of α(1)2.1. In pulldown assays, CR binding to fusion proteins containing these CRBs was largely Ca(2+)-dependent. α(1)2.1 coimmunoprecipitated with CR antibodies from transfected cells and mouse cerebellum, which confirmed the existence of CR-Ca(v)2.1 complexes in vitro and in vivo. In HEK293T cells, CR significantly decreased Ca(v)2.1 CDI and increased CDF. CR binding to α(1)2.1 was required for these effects, because they were not observed upon substitution of the II-III linker of α(1)2.1 with that from the Ca(v)1.2 α(1) subunit (α(1)1.2), which lacks the CRBs. In addition, coexpression of a protein containing the CRBs blocked the modulatory action of CR, most likely by competing with CR for interactions with α(1)2.1. Our findings highlight an unexpected role for CR in directly modulating effectors such as Ca(v)2.1, which may have major consequences for Ca(2+) signaling and neuronal excitability.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Cerebelo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Animais , Calbindina 2 , Canais de Cálcio Tipo N/genética , Cerebelo/citologia , Células HEK293 , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Estrutura Terciária de Proteína , Proteína G de Ligação ao Cálcio S100/genética
4.
J Physiol ; 590(24): 6327-42, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23045342

RESUMO

Dysregulation of L-type Ca(2+) currents in sinoatrial nodal (SAN) cells causes cardiac arrhythmia. Both Ca(v)1.2 and Ca(v)1.3 channels mediate sinoatrial L-type currents. Whether these channels exhibit differences in modulation and localization, which could affect their contribution to pacemaking, is unknown. In this study, we characterized voltage-dependent facilitation (VDF) and subcellular localization of Ca(v)1.2 and Ca(v)1.3 channels in mouse SAN cells and determined how these properties of Ca(v)1.3 affect sinoatrial pacemaking in a mathematical model. Whole cell Ba(2+) currents were recorded from SAN cells from mice carrying a point mutation that renders Ca(v)1.2 channels relatively insensitive to dihydropyridine antagonists. The Ca(v)1.2-mediated current was isolated in the presence of nimodipine (1 µm), which was subtracted from the total current to yield the Ca(v)1.3 component. With strong depolarizations (+80 mV), Ca(v)1.2 underwent significantly stronger inactivation than Ca(v)1.3. VDF of Ca(v)1.3 was evident during recovery from inactivation at a time when Ca(v)1.2 remained inactivated. By immunofluorescence, Ca(v)1.3 colocalized with ryanodine receptors in sarcomeric structures while Ca(v)1.2 was largely restricted to the delimiting plasma membrane. Ca(v)1.3 VDF enhanced recovery of pacemaker activity after pauses and positively regulated pacemaking during slow heart rate in a numerical model of mouse SAN automaticity, including preferential coupling of Ca(v)1.3 to ryanodine receptor-mediated Ca(2+) release. We conclude that strong VDF and colocalization with ryanodine receptors in mouse SAN cells are unique properties that may underlie a specific role for Ca(v)1.3 in opposing abnormal slowing of heart rate.


Assuntos
Relógios Biológicos , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Frequência Cardíaca , Nó Sinoatrial/metabolismo , Animais , Relógios Biológicos/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/deficiência , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/efeitos dos fármacos , Simulação por Computador , Di-Hidropiridinas/farmacologia , Feminino , Imunofluorescência , Frequência Cardíaca/efeitos dos fármacos , Masculino , Potenciais da Membrana , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Cardiovasculares , Técnicas de Patch-Clamp , Mutação Puntual , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcômeros/metabolismo , Nó Sinoatrial/efeitos dos fármacos , Fatores de Tempo
5.
J Biol Chem ; 286(16): 13945-53, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21383011

RESUMO

CaBP1 is a Ca(2+)-binding protein that regulates the gating of voltage-gated (Ca(V)) Ca(2+) channels. In the Ca(V)1.2 channel α(1)-subunit (α(1C)), CaBP1 interacts with cytosolic N- and C-terminal domains and blunts Ca(2+)-dependent inactivation. To clarify the role of the α(1C) N-terminal domain in CaBP1 regulation, we compared the effects of CaBP1 on two alternatively spliced variants of α(1C) containing a long or short N-terminal domain. In both isoforms, CaBP1 inhibited Ca(2+)-dependent inactivation but also caused a depolarizing shift in voltage-dependent activation and enhanced voltage-dependent inactivation (VDI). In binding assays, CaBP1 interacted with the distal third of the N-terminal domain in a Ca(2+)-independent manner. This segment is distinct from the previously identified calmodulin-binding site in the N terminus. However, deletion of a segment in the proximal N-terminal domain of both α(1C) isoforms, which spared the CaBP1-binding site, inhibited the effect of CaBP1 on VDI. This result suggests a modular organization of the α(1C) N-terminal domain, with separate determinants for CaBP1 binding and transduction of the effect on VDI. Our findings expand the diversity and mechanisms of Ca(V) channel regulation by CaBP1 and define a novel modulatory function for the initial segment of the N terminus of α(1C).


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Processamento Alternativo , Animais , Sítios de Ligação , Cálcio/química , Canais de Cálcio/química , Calmodulina/química , Feminino , Deleção de Genes , Humanos , Cinética , Ligação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Xenopus
6.
J Neurosci ; 30(25): 8367-75, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20573883

RESUMO

Ca(2+) influx through postsynaptic Ca(v)1.x L-type voltage-gated channels (LTCCs) is particularly effective in activating neuronal biochemical signaling pathways that might be involved in Hebbian synaptic plasticity (i.e., long-term potentiation and depression) and learning and memory. Here, we demonstrate that Ca(v)1.2 is the functionally relevant LTCC isoform in the thalamus-amygdala pathway of mice. We further show that acute pharmacological block of LTCCs abolishes Hebbian plasticity in the thalamus-amygdala pathway and impairs the acquisition of conditioned fear. On the other hand, chronic genetic loss of Ca(v)1.2 triggers a homeostatic change of the synapse, leading to a fundamental alteration of the mechanism of Hebbian plasticity by synaptic incorporation of Ca(2+)-permeable, GluA2-lacking AMPA receptors. Our results demonstrate for the first time the importance of the Ca(v)1.2 LTCC subtype in synaptic plasticity and fear memory acquisition.


Assuntos
Tonsila do Cerebelo/fisiologia , Canais de Cálcio Tipo L/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Potenciação de Longa Duração/fisiologia , Tálamo/fisiologia , Análise de Variância , Animais , Western Blotting , Eletrofisiologia , Homeostase/fisiologia , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Vias Neurais/fisiologia , Neurônios/fisiologia , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Coloração pela Prata , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Gravação em Vídeo
7.
J Neurosci ; 30(15): 5125-35, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20392935

RESUMO

Ca(v)1 (L-type) channels and calmodulin-dependent protein kinase II (CaMKII) are key regulators of Ca(2+) signaling in neurons. CaMKII directly potentiates the activity of Ca(v)1.2 and Ca(v)1.3 channels, but the underlying molecular mechanisms are incompletely understood. Here, we report that the CaMKII-associated protein densin is required for Ca(2+)-dependent facilitation of Ca(v)1.3 channels. While neither CaMKII nor densin independently affects Ca(v)1.3 properties in transfected HEK293T cells, the two together augment Ca(v)1.3 Ca(2+) currents during repetitive, but not sustained, depolarizing stimuli. Facilitation requires Ca(2+), CaMKII activation, and its association with densin, as well as densin binding to the Ca(v)1.3 alpha(1) subunit C-terminal domain. Ca(v)1.3 channels and densin are targeted to dendritic spines in neurons and form a complex with CaMKII in the brain. Our results demonstrate a novel mechanism for Ca(2+)-dependent facilitation that may intensify postsynaptic Ca(2+) signals during high-frequency stimulation.


Assuntos
Canais de Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Sialoglicoproteínas/metabolismo , Animais , Canais de Cálcio/genética , Linhagem Celular , Células Cultivadas , Espinhas Dendríticas/enzimologia , Espinhas Dendríticas/metabolismo , Hipocampo/enzimologia , Hipocampo/metabolismo , Humanos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/enzimologia , Neurônios/metabolismo , Ratos , Transfecção
8.
J Neurophysiol ; 103(1): 371-81, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19906882

RESUMO

Ca(v)2.1 channels regulate Ca(2+) signaling and excitability of cerebellar Purkinje neurons. These channels undergo a dual feedback regulation by incoming Ca(2+) ions, Ca(2+)-dependent facilitation and inactivation. Endogenous Ca(2+)-buffering proteins, such as parvalbumin (PV) and calbindin D-28k (CB), are highly expressed in Purkinje neurons and therefore may influence Ca(v)2.1 regulation by Ca(2+). To test this, we compared Ca(v)2.1 properties in dissociated Purkinje neurons from wild-type (WT) mice and those lacking both PV and CB (PV/CB(-/-)). Unexpectedly, P-type currents in WT and PV/CB(-/-) neurons differed in a way that was inconsistent with a role of PV and CB in acute modulation of Ca(2+) feedback to Ca(v)2.1. Ca(v)2.1 currents in PV/CB(-/-) neurons exhibited increased voltage-dependent inactivation, which could be traced to decreased expression of the auxiliary Ca(v)beta(2a) subunit compared with WT neurons. Although Ca(v)2.1 channels are required for normal pacemaking of Purkinje neurons, spontaneous action potentials were not different in WT and PV/CB(-/-) neurons. Increased inactivation due to molecular switching of Ca(v)2.1 beta-subunits may preserve normal activity-dependent Ca(2+) signals in the absence of Ca(2+)-buffering proteins in PV/CB(-/-) Purkinje neurons.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Parvalbuminas/metabolismo , Células de Purkinje/fisiologia , Proteína G de Ligação ao Cálcio S100/metabolismo , Potenciais de Ação/fisiologia , Animais , Calbindinas , Cálcio/metabolismo , Linhagem Celular , Humanos , Técnicas In Vitro , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Parvalbuminas/deficiência , Parvalbuminas/genética , Periodicidade , Ratos , Proteína G de Ligação ao Cálcio S100/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...