Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(10): e0224376, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31661526

RESUMO

In large scale systems of embodied agents, such as robot swarms, the ability to flock is essential in many tasks. However, the conditions necessary to artificially evolve self-organised flocking behaviours remain unknown. In this paper, we study and demonstrate how evolutionary techniques can be used to synthesise flocking behaviours, in particular, how fitness functions should be designed to evolve high-performing controllers. We start by considering Reynolds' seminal work on flocking, the boids model, and design three components of a fitness function that are directly based on his three local rules to enforce local separation, cohesion and alignment. Results show that embedding Reynolds' rules in the fitness function can lead to the successful evolution of flocking behaviours. However, only local, fragmented flocking behaviours tend to evolve when fitness scores are based on the individuals' conformity to Reynolds' rules. We therefore modify the components of the fitness function so that they consider the entire group of agents simultaneously, and find that the resulting behaviours lead to global flocking. Furthermore, the results show that alignment need not be explicitly rewarded to successfully evolve flocking. Our study thus represents a significant step towards the use of evolutionary techniques to synthesise collective behaviours for tasks in which embodied agents need to move as a single, cohesive group.


Assuntos
Comportamento Animal/fisiologia , Comportamento Social , Estatística como Assunto/métodos , Algoritmos , Animais , Simulação por Computador , Modelos Biológicos
2.
Nat Commun ; 8(1): 1754, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162806

RESUMO

The original version of this Article contained an error in the author contributions section, whereby credit for design of the experiments was not attributed to N.M. This error has now been corrected in both the PDF and HTML versions of the Article.

3.
Nat Commun ; 8(1): 439, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900125

RESUMO

Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

4.
PLoS One ; 12(8): e0182058, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28806756

RESUMO

Robot swarms are large-scale multirobot systems with decentralized control which means that each robot acts based only on local perception and on local coordination with neighboring robots. The decentralized approach to control confers number of potential benefits. In particular, inherent scalability and robustness are often highlighted as key distinguishing features of robot swarms compared with systems that rely on traditional approaches to multirobot coordination. It has, however, been shown that swarm robotics systems are not always fault tolerant. To realize the robustness potential of robot swarms, it is thus essential to give systems the capacity to actively detect and accommodate faults. In this paper, we present a generic fault-detection system for robot swarms. We show how robots with limited and imperfect sensing capabilities are able to observe and classify the behavior of one another. In order to achieve this, the underlying classifier is an immune system-inspired algorithm that learns to distinguish between normal behavior and abnormal behavior online. Through a series of experiments, we systematically assess the performance of our approach in a detailed simulation environment. In particular, we analyze our system's capacity to correctly detect robots with faults, false positive rates, performance in a foraging task in which each robot exhibits a composite behavior, and performance under perturbations of the task environment. Results show that our generic fault-detection system is robust, that it is able to detect faults in a timely manner, and that it achieves a low false positive rate. The developed fault-detection system has the potential to enable long-term autonomy for robust multirobot systems, thus increasing the usefulness of robots for a diverse repertoire of upcoming applications in the area of distributed intelligent automation.


Assuntos
Algoritmos , Robótica/métodos , Simulação por Computador , Modelos Teóricos
5.
R Soc Open Sci ; 4(7): 160938, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28791130

RESUMO

Online evolution of behavioural control on real robots is an open-ended approach to autonomous learning and adaptation: robots have the potential to automatically learn new tasks and to adapt to changes in environmental conditions, or to failures in sensors and/or actuators. However, studies have so far almost exclusively been carried out in simulation because evolution in real hardware has required several days or weeks to produce capable robots. In this article, we successfully evolve neural network-based controllers in real robotic hardware to solve two single-robot tasks and one collective robotics task. Controllers are evolved either from random solutions or from solutions pre-evolved in simulation. In all cases, capable solutions are found in a timely manner (1 h or less). Results show that more accurate simulations may lead to higher-performing controllers, and that completing the optimization process in real robots is meaningful, even if solutions found in simulation differ from solutions in reality. We furthermore demonstrate for the first time the adaptive capabilities of online evolution in real robotic hardware, including robots able to overcome faults injected in the motors of multiple units simultaneously, and to modify their behaviour in response to changes in the task requirements. We conclude by assessing the contribution of each algorithmic component on the performance of the underlying evolutionary algorithm.

6.
Evol Comput ; 25(2): 275-307, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26652102

RESUMO

Cooperative coevolutionary algorithms (CCEAs) rely on multiple coevolving populations for the evolution of solutions composed of coadapted components. CCEAs enable, for instance, the evolution of cooperative multiagent systems composed of heterogeneous agents, where each agent is modelled as a component of the solution. Previous works have, however, shown that CCEAs are biased toward stability: the evolutionary process tends to converge prematurely to stable states instead of (near-)optimal solutions. In this study, we show how novelty search can be used to avoid the counterproductive attraction to stable states in coevolution. Novelty search is an evolutionary technique that drives evolution toward behavioural novelty and diversity rather than exclusively pursuing a static objective. We evaluate three novelty-based approaches that rely on, respectively (1) the novelty of the team as a whole, (2) the novelty of the agents' individual behaviour, and (3) the combination of the two. We compare the proposed approaches with traditional fitness-driven cooperative coevolution in three simulated multirobot tasks. Our results show that team-level novelty scoring is the most effective approach, significantly outperforming fitness-driven coevolution at multiple levels. Novelty-driven cooperative coevolution can substantially increase the potential of CCEAs while maintaining a computational complexity that scales well with the number of populations.


Assuntos
Evolução Biológica , Modelos Biológicos , Algoritmos
7.
PLoS One ; 11(3): e0151834, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26999614

RESUMO

Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.


Assuntos
Robótica , Análise e Desempenho de Tarefas , Análise por Conglomerados , Portugal , Telecomunicações
8.
Evol Comput ; 24(2): 205-36, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26581015

RESUMO

One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.


Assuntos
Evolução Biológica , Robótica , Simulação por Computador
9.
Bioinspir Biomim ; 10(1): 016014, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25642825

RESUMO

Fault detection and fault tolerance represent two of the most important and largely unsolved issues in the field of multirobot systems (MRS). Efficient, long-term operation requires an accurate, timely detection, and accommodation of abnormally behaving robots. Most existing approaches to fault-tolerance prescribe a characterization of normal robot behaviours, and train a model to recognize these behaviours. Behaviours unrecognized by the model are consequently labelled abnormal or faulty. MRS employing these models do not transition well to scenarios involving temporal variations in behaviour (e.g., online learning of new behaviours, or in response to environment perturbations). The vertebrate immune system is a complex distributed system capable of learning to tolerate the organism's tissues even when they change during puberty or metamorphosis, and to mount specific responses to invading pathogens, all without the need of a genetically hardwired characterization of normality. We present a generic abnormality detection approach based on a model of the adaptive immune system, and evaluate the approach in a swarm of robots. Our results reveal the robust detection of abnormal robots simulating common electro-mechanical and software faults, irrespective of temporal changes in swarm behaviour. Abnormality detection is shown to be scalable in terms of the number of robots in the swarm, and in terms of the size of the behaviour classification space.


Assuntos
Imunidade Adaptativa/imunologia , Biomimética/instrumentação , Análise de Falha de Equipamento/métodos , Falha de Equipamento , Modelos Imunológicos , Robótica/instrumentação , Algoritmos , Animais , Biomimética/métodos , Simulação por Computador , Humanos , Robótica/métodos
10.
Evol Comput ; 23(3): 421-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25478664

RESUMO

Online evolution gives robots the capacity to learn new tasks and to adapt to changing environmental conditions during task execution. Previous approaches to online evolution of neural controllers are typically limited to the optimisation of weights in networks with a prespecified, fixed topology. In this article, we propose a novel approach to online learning in groups of autonomous robots called odNEAT. odNEAT is a distributed and decentralised neuroevolution algorithm that evolves both weights and network topology. We demonstrate odNEAT in three multirobot tasks: aggregation, integrated navigation and obstacle avoidance, and phototaxis. Results show that odNEAT approximates the performance of rtNEAT, an efficient centralised method, and outperforms IM-(µ + 1), a decentralised neuroevolution algorithm. Compared with rtNEAT and IM-(µ + 1), odNEAT's evolutionary dynamics lead to the synthesis of less complex neural controllers with superior generalisation capabilities. We show that robots executing odNEAT can display a high degree of fault tolerance as they are able to adapt and learn new behaviours in the presence of faults. We conclude with a series of ablation studies to analyse the impact of each algorithmic component on performance.


Assuntos
Algoritmos , Robótica , Genoma , Redes Neurais de Computação
11.
Artif Life ; 15(4): 465-84, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19463056

RESUMO

This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two modules (two fully autonomous robots) of a mobile self-reconfigurable system without a priori introduced behavioral or morphological heterogeneities. The controllers are dynamic neural networks evolved in simulation that directly control all the actuators of the two robots. The neurocontrollers cause the dynamic specialization of the robots by allocating roles between them based solely on their interaction. We show that the best evolved controller proves to be successful when tested on a real hardware platform, the swarm-bot. The performance achieved is similar to the one achieved by existing modular or behavior-based approaches, also due to the effect of an emergent recovery mechanism that was neither explicitly rewarded by the fitness function, nor observed during the evolutionary simulation. Our results suggest that direct access to the orientations or intentions of the other agents is not a necessary condition for robot coordination: Our robots coordinate without direct or explicit communication, contrary to what is assumed by most research works in collective robotics. This work also contributes to strengthening the evidence that evolutionary robotics is a design methodology that can tackle real-world tasks demanding fine sensory-motor coordination.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Robótica/métodos , Algoritmos , Evolução Biológica , Simulação por Computador , Computadores , Desenho de Equipamento , Modelos Estatísticos , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...