Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2019: 7898069, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281592

RESUMO

Oxidative stress plays an important role in the pathogenesis of cataracts. Small ubiquitin-like modifier (SUMO) proteins have great effects on cell stress response. Previous studies have shown that TP53INP1 can arrest cell growth and induce apoptosis by modulating p53 transcriptional activity and that both TP53INP1 and p53 are substrates of SUMOylation. However, no previous research has studied the effect of SUMOylation on the oxidative stress response in cataracts. This is the first study to investigate the effect of SUMOylation of TP53INP1 in oxidative stress-induced lens epithelial cell injury and age-related cataract formation. We found that the oxidative stress-induced endogenous SUMOylation of TP53INP1 promoted human lens epithelial cell (holed) apoptosis and regulated hLEC antioxidant effects by increasing the stability and transcription of TP53INP1 in age-related cataracts. SUMO-1, SUMOylation, and TP53INP1 were upregulated in lens tissues affected by age-related cataracts. A SUMO-1-specific protease, SENP1, acted as an oxidative stress-sensitive target gene in hLECs. This study identified for the first time that TP53INP1 can be SUMOylated in vivo, that the SUMOylation of TP53INP1 is induced by oxidative stress, and that SUMOylation/deSUMOylation can affect the stability and transcription of TP53INP1 in hLECs.


Assuntos
Antioxidantes/metabolismo , Catarata/genética , Cristalino/fisiopatologia , Estresse Oxidativo/genética , Sumoilação/fisiologia , Proteínas de Transporte , Catarata/patologia , Células Epiteliais , Proteínas de Choque Térmico , Humanos , Transfecção
2.
Int J Ophthalmol ; 11(2): 201-207, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487807

RESUMO

AIM: To detect the expression of miR-211 in age-related cataract tissue, explore the effects of miR-211 on lens epithelial cell proliferation and apoptosis, and identify its target gene. METHODS: This study used real-time quantitative polymerase chain reaction (RT-qPCR) to measure the expression of miR-211 and its predicted target gene [silent mating-type information regulation 2 homolog 1 (SIRT1)] in 46 anterior lens capsules collected from age-related cataract patients. Human lens epithelial cell line (SRA01/04) cells were transfected with either miR-211 mimics, mimic controls, miR-211 inhibitors or inhibitor controls, 72h after transfection, miRNA and protein expression of SIRT1 were measured using RT-qPCR and Western blotting; then cells were exposed to 200 µmol/L H2O2 for 1h, whereupon cell viability was measured by MTS assay, caspase-3 assay was performed. Dual luciferase reporter assay was performed to verify the relationship between miR-211 of SIRT1. RESULTS: Compared to the control group, expression of miR-211 was significantly increased (P<0.001), the miRNA and protein expression of SIRT1 were significantly decreased (P<0.001) in the anterior lens capsules of patients with age-related cataracts. Relative to the control group, SIRT1 miRNA and protein levels in the miR-211 mimic group were significantly reduced, cell proliferation activity significantly decreased, and caspase-3 activity was significantly increased (P<0.001). In the miR-211 inhibitor group, SIRT1 miRNA and protein expression were significantly increased, cell proliferation activity significantly increased, and caspase-3 activity was significantly decreased (P<0.001). A dual luciferase reporter assay confirmed that SIRT1 is a direct target of miR-211. CONCLUSION: miR-211 is highly expressed in the anterior lens capsules of patients with age-related cataracts. By negatively regulating the expression of SIRT1, miR-211 promotes lens epithelial cell apoptosis and inhibits lens epithelial cell proliferation.

3.
Int J Ophthalmol ; 11(3): 349-353, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29600165

RESUMO

AIM: To investigate the effects and mechanism of miR-211 in mediating the antioxidant function of lens epithelial cells affected by age-related cataracts. METHODS: Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect miR-211 expression in the anterior lens capsules of healthy people, the anterior lens capsules of patients with age-related cataracts, and human epithelial cell line (SRA01/04) cells exposed to oxidative stress. A 2', 7'-dichloro-fluorescein diacetate (DCFH-DA) probe was used to measure the levels of endogenous reactive oxygen species (ROS) in human lens epithelial cells (hLECs) exposed to 400 µmol/L H2O2 for 1h. SRA01/04 cells were transfected with either miR-211 mimics, mimic controls, miR-211 inhibitors or inhibitor controls. After 72h, these cells were exposed to 400 µmol/L H2O2 for 1h, then p53 and Bax mRNA expression were measured using RT-qPCR. p53 and Bax protein expression were also measured by Western blotting analysis. Finally, cell viability was assessed using an MTS assay. RESULTS: Compared to the control group, expression of miR-211 in the anterior lens capsules of age-related cataract patients and in SRA01/04 cells exposed to oxidative stress was significantly increased (P<0.001). Levels of endogenous ROS were significantly elevated in hLECs exposed to oxidative stress (P<0.001). Compared to the mimic control group, the hLECs in the miR-211 mimic group expressed significantly higher levels of p53 and Bax mRNA and protein while cell viability was significantly reduced (P<0.001). Conversely, p53 and Bax mRNA and protein expression were significantly reduced in the miR-211 inhibitor group as compared to the control group, while the cells in this group had much higher levels of cell viability (P<0.001). CONCLUSION: miR-211 is upregulated in the anterior lens capsules of age-related cataract patients. miR-211 decreased the antioxidative stress capacity of lens epithelial cells by upregulating p53 and Bax, while inhibiting cell proliferation and repair. This finding suggests that miR-211 may play a key role in the development of age-related cataracts.

4.
Mol Med Rep ; 17(4): 5021-5028, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29393409

RESUMO

MicroRNA-24 (miR-24) serves an important role in cell proliferation, migration and inflammation in various types of disease. In the present study, the biological function and molecular mechanism of miR­24 was investigated in association with the progression of age­associated cataracts. To the best of our knowledge the present study is the first to report that the expression of miR­24 was significantly increased in human anterior lens capsules affected by age­associated cataracts as well as lens epithelial cells (LECs) exposed to oxidative stress. Overexpression of miR­24 induced p53 expression and p53 was verified as a direct target of miR­24. Overexpression of miR­24 enhanced LEC death by directly targeting p53. The present study revealed that oxidative stress induced the upregulation of miR­24 and enhanced LEC death by directly targeting p53. These results suggest that the miR­24­p53 signaling pathway is involved in a novel mechanism of age­associated cataractogenesis and miR­24 may be a useful therapeutic target for age-associated cataracts.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Apoptose/genética , Catarata/etiologia , Catarata/metabolismo , MicroRNAs/genética , Estresse Oxidativo , Proteína Supressora de Tumor p53/genética , Regiões 3' não Traduzidas , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...