Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 133(16): 1797-1811, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31387935

RESUMO

Background: Aneurysmal subarachnoid haemorrhage (SAH) is a variant of haemorrhagic stroke with a striking 50% mortality rate. In addition to the initial insult, secondary delayed brain injury may occur days after the initial ischemic insult and is associated with vasospasms leading to delayed cerebral ischemia. We have previously shown that the MEK1/2 inhibitor U0126 improves neurological assessment after SAH in rats. Aim: The purpose of the present study was to analyse the impact of a broad selection of high potency MEK1/2 inhibitors in an organ culture model and use the IC50 values obtained from the organ culture to select highly potent inhibitors for pre-clinical in vivo studies. Results: Nine highly potent mitogen activated protein kinase kinase (MEK1/2) inhibitors were screened and the two most potent inhibitors from the organ culture screening, trametinib and PD0325901, were tested in an in vivo experimental rat SAH model with intrathecal injections. Subsequently, the successful inhibitor trametinib was administered intraperitoneally in a second in vivo study. In both regimens, trametinib treatment caused significant reductions in the endothelin-1 induced contractility after SAH, which is believed to be associated with endothelin B receptor up-regulation. Trametinib treated rats showed improved neurological scores, evaluated by the ability to traverse a rotating pole, after induced SAH. Conclusion: The PD0325901 treatment did not improve the neurological score after SAH, nor showed any beneficial therapeutic effect on the contractility, contrasting with the reduction in neurological deficits seen after trametinib treatment. These data show that trametinib might be a potential candidate for treatment of SAH.


Assuntos
Artérias Cerebrais/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Hemorragia Subaracnóidea/tratamento farmacológico , Animais , Artéria Basilar/efeitos dos fármacos , Artéria Basilar/metabolismo , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Artérias Cerebrais/metabolismo , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Difenilamina/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Masculino , Contração Muscular/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Piridonas/farmacologia , Piridonas/uso terapêutico , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Ratos , Ratos Sprague-Dawley
2.
PLoS One ; 14(4): e0215398, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30978262

RESUMO

Vascular pathophysiological changes after haemorrhagic stroke, such as phenotypic modulation of the cerebral arteries and cerebral vasospasms, are associated with delayed cerebral ischemia (DCI) and poor outcome. The only currently approved drug treatment shown to reduce the risk of DCI and improve neurologic outcome after aneurysmal subarachnoid haemorrhage (SAH) is nimodipine, a dihydropyridine L-type voltage-gated Ca2+ channel blocker. MEK1/2 mediated transcriptional upregulation of contractile receptors, including endothelin-1 (ET-1) receptors, has previously been shown to be a factor in the pathology of SAH. The aim of the study was to compare intrathecal and subcutaneous treatment regimens of nimodipine and intrathecal treatment regimens of U0126, a MEK1/2 inhibitor, in a single injection experimental rat SAH model with post 48 h endpoints consisting of wire myography of cerebral arteries, flow cytometry of cerebral arterial tissue and behavioural evaluation. Following ET-1 concentration-response curves, U0126 exposed arteries had a significantly lower ET-1max than vehicle arteries. Arteries from both the intrathecal- and subcutaneous nimodipine treated animals had significantly higher ET-1max contractions than the U0126 arteries. Furthermore, Ca2+ concentration response curves (precontracted with ET-1 and in the presence of nimodipine) showed that nimodipine treatment could result in larger nimodipine insensitive contractions compared to U0126. Flow cytometry showed decreased protein expression of the ETB receptor in U0126 treated cerebral vascular smooth muscle cells compared to vehicle. Only U0126 treatment lowered ET-1max contractions and ETB receptor levels, as well as decreased the contractions involving nimodipine-insensitive Ca2+ channels, when compared to both intrathecal and subcutaneous nimodipine treatment. This indicate that targeting gene expression might be a better strategy than blocking specific receptors or ion channels in future treatments of SAH.


Assuntos
Butadienos/farmacologia , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/fisiopatologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Artérias Cerebrais/efeitos dos fármacos , Artérias Cerebrais/fisiopatologia , Modelos Animais de Doenças , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Nimodipina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Endotelina B/genética , Receptor de Endotelina B/fisiologia , Hemorragia Subaracnóidea/genética , Regulação para Cima/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...