Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
EMBO Rep ; 25(5): 2188-2201, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649664

RESUMO

Transcription control is a major determinant of cell fate decisions in somatic tissues. By contrast, early germline fate specification in numerous vertebrate and invertebrate species relies extensively on RNA-level regulation, exerted on asymmetrically inherited maternal supplies, with little-to-no zygotic transcription. However delayed, a maternal-to-zygotic transition is nevertheless poised to complete the deployment of pre-gametic programs in the germline. Here, we focus on early germline specification in the tunicate Ciona to study zygotic genome activation. We first demonstrate that a peculiar cellular remodeling event excludes localized postplasmic Pem-1 mRNA, which encodes the general inhibitor of transcription. Subsequently, zygotic transcription begins in Pem-1-negative primordial germ cells (PGCs), as revealed by histochemical detection of elongating RNA Polymerase II, and nascent Mef2 transcripts. In addition, we uncover a provisional antagonism between JAK and MEK/BMPRI/GSK3 signaling, which controls the onset of zygotic gene expression, following cellular remodeling of PGCs. We propose a 2-step model for the onset of zygotic transcription in the Ciona germline and discuss the significance of germ plasm dislocation and remodeling in the context of developmental fate specification.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas , Janus Quinases , Zigoto , Animais , Zigoto/metabolismo , Células Germinativas/metabolismo , Janus Quinases/metabolismo , Transdução de Sinais , Ciona/genética , Ciona/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/embriologia , Transcrição Gênica
2.
Genome Biol ; 25(1): 24, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238840

RESUMO

BACKGROUND: Modeling of gene regulatory networks (GRNs) is limited due to a lack of direct measurements of genome-wide transcription factor activity (TFA) making it difficult to separate covariance and regulatory interactions. Inference of regulatory interactions and TFA requires aggregation of complementary evidence. Estimating TFA explicitly is problematic as it disconnects GRN inference and TFA estimation and is unable to account for, for example, contextual transcription factor-transcription factor interactions, and other higher order features. Deep-learning offers a potential solution, as it can model complex interactions and higher-order latent features, although does not provide interpretable models and latent features. RESULTS: We propose a novel autoencoder-based framework, StrUcture Primed Inference of Regulation using latent Factor ACTivity (SupirFactor) for modeling, and a metric, explained relative variance (ERV), for interpretation of GRNs. We evaluate SupirFactor with ERV in a wide set of contexts. Compared to current state-of-the-art GRN inference methods, SupirFactor performs favorably. We evaluate latent feature activity as an estimate of TFA and biological function in S. cerevisiae as well as in peripheral blood mononuclear cells (PBMC). CONCLUSION: Here we present a framework for structure-primed inference and interpretation of GRNs, SupirFactor, demonstrating interpretability using ERV in multiple biological and experimental settings. SupirFactor enables TFA estimation and pathway analysis using latent factor activity, demonstrated here on two large-scale single-cell datasets, modeling S. cerevisiae and PBMC. We find that the SupirFactor model facilitates biological analysis acquiring novel functional and regulatory insight.


Assuntos
Redes Reguladoras de Genes , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Algoritmos , Leucócitos Mononucleares , Fatores de Transcrição/genética
3.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37781597

RESUMO

The human heart is infamous for not healing after infarction in adults, prompting biomedical interest in species that can regenerate damaged hearts. In such animals as zebrafish and neonatal mice, cardiac repair relies on remaining heart tissue supporting cardiomyocyte proliferation. Natural de novo cardiogenesis in post-embryonic stages thus remains elusive. Here we show that the tunicate Ciona, an ascidian among the closest living relatives to the vertebrates, can survive complete chemogenetic ablation of the heart and loss of cardiac function, and recover both cardiac tissue and contractility. As in vertebrates, Ciona heart regeneration relies on Bone Morphogenetic Protein (BMP) signaling-dependent proliferation of cardiomyocytes, providing insights into the evolutionary origins of regenerative cardiogenesis in chordates. Remarkably, prospective lineage tracing by photoconversion of the fluorescent protein Kaede suggested that new cardiomyocytes can emerge from endodermal lineages in post-metamorphic animals, providing an unprecedented case of regenerative de novo cardiogenesis. Finally, while embryos cannot compensate for early losses of the cardiogenic lineage, forming heartless juveniles, developing animals gain their regenerative ability during metamorphosis, uncovering a fundamental transition between deterministic embryogenesis and regulative post-embryonic development.

4.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240211

RESUMO

During embryonic development, cell-fate specification gives rise to dedicated lineages that underlie tissue formation. In olfactores, which comprise tunicates and vertebrates, the cardiopharyngeal field is formed by multipotent progenitors of both cardiac and branchiomeric muscles. The ascidian Ciona is a powerful model to study cardiopharyngeal fate specification with cellular resolution, as only two bilateral pairs of multipotent cardiopharyngeal progenitors give rise to the heart and to the pharyngeal muscles (also known as atrial siphon muscles, ASM). These progenitors are multilineage primed, in as much as they express a combination of early ASM- and heart-specific transcripts that become restricted to their corresponding precursors, following oriented and asymmetric divisions. Here, we identify the primed gene ring finger 149 related (Rnf149-r), which later becomes restricted to the heart progenitors, but appears to regulate pharyngeal muscle fate specification in the cardiopharyngeal lineage. CRISPR/Cas9-mediated loss of Rnf149-r function impairs atrial siphon muscle morphogenesis, and downregulates Tbx1/10 and Ebf, two key determinants of pharyngeal muscle fate, while upregulating heart-specific gene expression. These phenotypes are reminiscent of the loss of FGF/MAPK signaling in the cardiopharyngeal lineage, and an integrated analysis of lineage-specific bulk RNA-seq profiling of loss-of-function perturbations has identified a significant overlap between candidate FGF/MAPK and Rnf149-r target genes. However, functional interaction assays suggest that Rnf149-r does not directly modulate the activity of the FGF/MAPK/Ets1/2 pathway. Instead, we propose that Rnf149-r acts both in parallel to the FGF/MAPK signaling on shared targets, as well as on FGF/MAPK-independent targets through (a) separate pathway(s).


Assuntos
Fibrilação Atrial , Ciona intestinalis , Animais , Fibrilação Atrial/genética , Ciona intestinalis/genética , Músculos Faríngeos , Coração , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Linhagem da Célula/genética
5.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778259

RESUMO

The modeling of gene regulatory networks (GRNs) is limited due to a lack of direct measurements of regulatory features in genome-wide screens. Most GRN inference methods are therefore forced to model relationships between regulatory genes and their targets with expression as a proxy for the upstream independent features, complicating validation and predictions produced by modeling frameworks. Separating covariance and regulatory influence requires aggregation of independent and complementary sets of evidence, such as transcription factor (TF) binding and target gene expression. However, the complete regulatory state of the system, e.g. TF activity (TFA) is unknown due to a lack of experimental feasibility, making regulatory relations difficult to infer. Some methods attempt to account for this by modeling TFA as a latent feature, but these models often use linear frameworks that are unable to account for non-linearities such as saturation, TF-TF interactions, and other higher order features. Deep learning frameworks may offer a solution, as they are capable of modeling complex interactions and capturing higher-order latent features. However, these methods often discard central concepts in biological systems modeling, such as sparsity and latent feature interpretability, in favor of increased model complexity. We propose a novel deep learning autoencoder-based framework, StrUcture Primed Inference of Regulation using latent Factor ACTivity (SupirFactor), that scales to single cell genomic data and maintains interpretability to perform GRN inference and estimate TFA as a latent feature. We demonstrate that SupirFactor outperforms current leading GRN inference methods, predicts biologically relevant TFA and elucidates functional regulatory pathways through aggregation of TFs.

6.
Sci Adv ; 8(10): eabg0834, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275720

RESUMO

GATA4/5/6 transcription factors play essential, conserved roles in heart development. To understand how GATA4/5/6 modulates the mesoderm-to-cardiac fate transition, we labeled, isolated, and performed single-cell gene expression analysis on cells that express gata5 at precardiac time points spanning zebrafish gastrulation to somitogenesis. We found that most mesendoderm-derived lineages had dynamic gata5/6 expression. In the absence of Gata5/6, the population structure of mesendoderm-derived cells was substantially altered. In addition to the expected absence of cardiac mesoderm, we confirmed a concomitant expansion of cranial-pharyngeal mesoderm. Moreover, Gata5/6 loss led to extensive changes in chromatin accessibility near cardiac and pharyngeal genes. Functional analyses in zebrafish and the tunicate Ciona, which has a single GATA4/5/6 homolog, revealed that GATA4/5/6 acts upstream of tbx1 to exert essential and cell-autonomous roles in promoting cardiac and inhibiting pharyngeal mesoderm identity. Overall, cardiac and pharyngeal mesoderm fate choices are achieved through an evolutionarily conserved GATA4/5/6 regulatory network.


Assuntos
Fator de Transcrição GATA4 , Peixe-Zebra , Animais , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA5/genética , Fator de Transcrição GATA5/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
7.
Nat Commun ; 12(1): 6645, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789765

RESUMO

The poles of the heart and branchiomeric muscles of the face and neck are formed from the cardiopharyngeal mesoderm within the pharyngeal apparatus. They are disrupted in patients with 22q11.2 deletion syndrome, due to haploinsufficiency of TBX1, encoding a T-box transcription factor. Here, using single cell RNA-sequencing, we now identify a multilineage primed population within the cardiopharyngeal mesoderm, marked by Tbx1, which has bipotent properties to form cardiac and branchiomeric muscle cells. The multilineage primed cells are localized within the nascent mesoderm of the caudal lateral pharyngeal apparatus and provide a continuous source of cardiopharyngeal mesoderm progenitors. Tbx1 regulates the maturation of multilineage primed progenitor cells to cardiopharyngeal mesoderm derivatives while restricting ectopic non-mesodermal gene expression. We further show that TBX1 confers this balance of gene expression by direct and indirect regulation of enriched genes in multilineage primed progenitors and downstream pathways, partly through altering chromatin accessibility, the perturbation of which can lead to congenital defects in individuals with 22q11.2 deletion syndrome.


Assuntos
Região Branquial/citologia , Mesoderma/citologia , Miocárdio/citologia , Proteínas com Domínio T/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Região Branquial/embriologia , Região Branquial/metabolismo , Diferenciação Celular , Linhagem da Célula , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Coração/embriologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas com Domínio T/genética
8.
Elife ; 102021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34842140

RESUMO

Physiological and pathological morphogenetic events involve a wide array of collective movements, suggesting that multicellular arrangements confer biochemical and biomechanical properties contributing to tissue-scale organization. The Ciona cardiopharyngeal progenitors provide the simplest model of collective cell migration, with cohesive bilateral cell pairs polarized along the leader-trailer migration path while moving between the ventral epidermis and trunk endoderm. We use the Cellular Potts Model to computationally probe the distributions of forces consistent with shapes and collective polarity of migrating cell pairs. Combining computational modeling, confocal microscopy, and molecular perturbations, we identify cardiopharyngeal progenitors as the simplest cell collective maintaining supracellular polarity with differential distributions of protrusive forces, cell-matrix adhesion, and myosin-based retraction forces along the leader-trailer axis. 4D simulations and experimental observations suggest that cell-cell communication helps establish a hierarchy to align collective polarity with the direction of migration, as observed with three or more cells in silico and in vivo. Our approach reveals emerging properties of the migrating collective: cell pairs are more persistent, migrating longer distances, and presumably with higher accuracy. Simulations suggest that cell pairs can overcome mechanical resistance of the trunk endoderm more effectively when they are polarized collectively. We propose that polarized supracellular organization of cardiopharyngeal progenitors confers emergent physical properties that determine mechanical interactions with their environment during morphogenesis.


Assuntos
Comunicação Celular , Movimento Celular , Polaridade Celular , Ciona intestinalis/embriologia , Células-Tronco/fisiologia , Animais , Embrião não Mamífero/embriologia
9.
PLoS Comput Biol ; 17(1): e1008569, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411784

RESUMO

The analysis of single-cell genomics data presents several statistical challenges, and extensive efforts have been made to produce methods for the analysis of this data that impute missing values, address sampling issues and quantify and correct for noise. In spite of such efforts, no consensus on best practices has been established and all current approaches vary substantially based on the available data and empirical tests. The k-Nearest Neighbor Graph (kNN-G) is often used to infer the identities of, and relationships between, cells and is the basis of many widely used dimensionality-reduction and projection methods. The kNN-G has also been the basis for imputation methods using, e.g., neighbor averaging and graph diffusion. However, due to the lack of an agreed-upon optimal objective function for choosing hyperparameters, these methods tend to oversmooth data, thereby resulting in a loss of information with regard to cell identity and the specific gene-to-gene patterns underlying regulatory mechanisms. In this paper, we investigate the tuning of kNN- and diffusion-based denoising methods with a novel non-stochastic method for optimally preserving biologically relevant informative variance in single-cell data. The framework, Denoising Expression data with a Weighted Affinity Kernel and Self-Supervision (DEWÄKSS), uses a self-supervised technique to tune its parameters. We demonstrate that denoising with optimal parameters selected by our objective function (i) is robust to preprocessing methods using data from established benchmarks, (ii) disentangles cellular identity and maintains robust clusters over dimension-reduction methods, (iii) maintains variance along several expression dimensions, unlike previous heuristic-based methods that tend to oversmooth data variance, and (iv) rarely involves diffusion but rather uses a fixed weighted kNN graph for denoising. Together, these findings provide a new understanding of kNN- and diffusion-based denoising methods. Code and example data for DEWÄKSS is available at https://gitlab.com/Xparx/dewakss/-/tree/Tjarnberg2020branch.


Assuntos
Algoritmos , Genômica/métodos , Análise de Célula Única/métodos , Aprendizado de Máquina Supervisionado , Animais , Linhagem Celular , Bases de Dados Genéticas , Humanos , Camundongos , RNA-Seq , Saccharomyces cerevisiae
10.
Evol Dev ; 23(2): 72-85, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33355999

RESUMO

Many species in the tunicate family Molgulidae have independently lost their swimming larval form and instead develop as tailless, immotile larvae. These larvae do not develop structures that are essential for swimming such as the notochord, otolith, and tail muscles. However, little is known about neural development in these nonswimming larvae. Here, we studied the patterning of the Motor Ganglion (MG) of Molgula occulta, a nonswimming species. We found that spatial patterns of MG neuron regulators in this species are conserved, compared with species with swimming larvae, suggesting that the gene networks regulating their expression are intact despite the loss of swimming. However, expression of the key motor neuron regulatory gene Ebf (Collier/Olf/EBF) was reduced in the developing MG of M. occulta when compared with molgulid species with swimming larvae. This was corroborated by measuring allele-specific expression of Ebf in hybrid embryos from crosses of M. occulta with the swimming species M. oculata. Heterologous reporter construct assays in the model tunicate species Ciona robusta revealed a specific cis-regulatory sequence change that reduces expression of Ebf in the MG, but not in other cells. Taken together, these data suggest that MG neurons are still specified in M. occulta larvae, but their differentiation might be impaired due to reduction of Ebf expression levels.


Assuntos
Urocordados , Animais , Evolução Biológica , Larva/genética , Neurônios Motores , Notocorda , Urocordados/genética
11.
Cell Syst ; 11(6): 625-639.e13, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33278344

RESUMO

Determining genes that orchestrate cell differentiation in development and disease remains a fundamental goal of cell biology. This study establishes a genome-wide metric based on the gene-repressive trimethylation of histone H3 at lysine 27 (H3K27me3) across hundreds of diverse cell types to identify genetic regulators of cell differentiation. We introduce a computational method, TRIAGE, which uses discordance between gene-repressive tendency and expression to identify genetic drivers of cell identity. We apply TRIAGE to millions of genome-wide single-cell transcriptomes, diverse omics platforms, and eukaryotic cells and tissue types. Using a wide range of data, we validate the performance of TRIAGE in identifying cell-type-specific regulatory factors across diverse species including human, mouse, boar, bird, fish, and tunicate. Using CRISPR gene editing, we use TRIAGE to experimentally validate RNF220 as a regulator of Ciona cardiopharyngeal development and SIX3 as required for differentiation of endoderm in human pluripotent stem cells. A record of this paper's transparent peer review process is included in the Supplemental Information.


Assuntos
Epigenômica/métodos , Diferenciação Celular , Humanos
12.
ACS Omega ; 5(25): 15537-15546, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32637829

RESUMO

The rise of single-cell transcriptomics has created an urgent need for similar approaches that use a minimal number of cells to quantify expression levels of proteins. We integrated and optimized multiple recent developments to establish a proteomics workflow to quantify proteins from as few as 1000 mammalian stem cells. The method uses chemical peptide labeling, does not require specific equipment other than cell lysis tools, and quantifies >2500 proteins with high reproducibility. We validated the method by comparing mouse embryonic stem cells and in vitro differentiated motor neurons. We identify differentially expressed proteins with small fold changes and a dynamic range in abundance similar to that of standard methods. Protein abundance measurements obtained with our protocol compared well to corresponding transcript abundance and to measurements using standard inputs. The protocol is also applicable to other systems, such as fluorescence-activated cell sorting (FACS)-purified cells from the tunicate Ciona. Therefore, we offer a straightforward and accurate method to acquire proteomics data from minimal input samples.

13.
G3 (Bethesda) ; 10(8): 2697-2711, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32518083

RESUMO

Reproductive isolation is central to speciation, but interspecific crosses between two closely related species can produce viable and fertile hybrids. Two different species of tunicates in the same ascidian genus, Ciona robusta and Ciona intestinalis, can produce hybrids. However, wild sympatric populations display limited gene flow, suggesting the existence of obstacles to interspecific reproduction that remain unknown. Here, we took advantage of a closed culture system to cross C. robusta with C. intestinalis and established F1 and F2 hybrids. We monitored post-embryonic development, survival, and sexual maturation to characterize the genetic basis of simple traits, and further probe the physiological mechanisms underlying reproductive isolation. Partial viability of first and second generation hybrids suggested that both pre- and postzygotic mechanisms contributed to genomic incompatibilities in hybrids. We observed asymmetric fitness, whereby the C. intestinalis maternal lines fared more poorly in our system, pointing to maternal origins of species-specific sensitivity. We discuss the possibility that asymmetrical second generation inviability and infertility emerge from interspecific incompatibilities between the nuclear and mitochondrial genomes, or other maternal effect genes. This work paves the way to quantitative genetic approaches to study the mechanisms underlying genomic incompatibilities and other complex traits in the genome-enabled Ciona model.


Assuntos
Ciona intestinalis , Animais , Ciona intestinalis/genética , Fertilidade , Genoma , Genômica , Especificidade da Espécie
14.
Elife ; 82019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31746740

RESUMO

During embryogenesis, chromatin accessibility profiles control lineage-specific gene expression by modulating transcription, thus impacting multipotent progenitor states and subsequent fate choices. Subsets of cardiac and pharyngeal/head muscles share a common origin in the cardiopharyngeal mesoderm, but the chromatin landscapes that govern multipotent progenitors competence and early fate choices remain largely elusive. Here, we leveraged the simplicity of the chordate model Ciona to profile chromatin accessibility through stereotyped transitions from naive Mesp+ mesoderm to distinct fate-restricted heart and pharyngeal muscle precursors. An FGF-Foxf pathway acts in multipotent progenitors to establish cardiopharyngeal-specific patterns of accessibility, which govern later heart vs. pharyngeal muscle-specific expression profiles, demonstrating extensive spatiotemporal decoupling between early cardiopharyngeal enhancer accessibility and late cell-type-specific activity. We found that multiple cis-regulatory elements, with distinct chromatin accessibility profiles and motif compositions, are required to activate Ebf and Tbx1/10, two key determinants of cardiopharyngeal fate choices. We propose that these 'combined enhancers' foster spatially and temporally accurate fate choices, by increasing the repertoire of regulatory inputs that control gene expression, through either accessibility and/or activity.


Assuntos
Cromatina/fisiologia , Ciona intestinalis/crescimento & desenvolvimento , Desenvolvimento Embrionário/fisiologia , Coração/embriologia , Músculos Faríngeos/embriologia , Músculos Faríngeos/crescimento & desenvolvimento , Animais , Diferenciação Celular/genética , Ciona intestinalis/genética , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/embriologia , Mesoderma/metabolismo , Faringe , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Transativadores
15.
Nat Commun ; 10(1): 3857, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451684

RESUMO

Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation. In toto live imaging and lineage tracing of drl-based reporters captures the dynamic LPM emergence as lineage-restricted mesendoderm field. The drl pan-LPM enhancer responds to the transcription factors EomesoderminA, FoxH1, and MixL1 that combined with Smad activity drive LPM emergence. We uncover specific activity of zebrafish-derived drl reporters in LPM-corresponding territories of several chordates including chicken, axolotl, lamprey, Ciona, and amphioxus, revealing a universal upstream LPM program. Altogether, our work provides a mechanistic framework for LPM emergence as defined progenitor field, possibly representing an ancient mesodermal cell state that predates the primordial vertebrate embryo.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/embriologia , Proteínas de Peixe-Zebra/genética , Animais , Embrião não Mamífero , Indução Embrionária/genética , Gastrulação/genética , Microscopia Intravital , Peixe-Zebra
16.
Nat Cell Biol ; 21(6): 674-686, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160712

RESUMO

In vertebrates, multipotent progenitors located in the pharyngeal mesoderm form cardiomyocytes and branchiomeric head muscles, but the dynamic gene expression programmes and mechanisms underlying cardiopharyngeal multipotency and heart versus head muscle fate choices remain elusive. Here, we used single-cell genomics in the simple chordate model Ciona to reconstruct developmental trajectories forming first and second heart lineages and pharyngeal muscle precursors and characterize the molecular underpinnings of cardiopharyngeal fate choices. We show that FGF-MAPK signalling maintains multipotency and promotes the pharyngeal muscle fate, whereas signal termination permits the deployment of a pan-cardiac programme, shared by the first and second heart lineages, to define heart identity. In the second heart lineage, a Tbx1/10-Dach pathway actively suppresses the first heart lineage programme, conditioning later cell diversity in the beating heart. Finally, cross-species comparisons between Ciona and the mouse evoke the deep evolutionary origins of cardiopharyngeal networks in chordates.


Assuntos
Ciona intestinalis/genética , Coração/crescimento & desenvolvimento , Músculos Faríngeos/crescimento & desenvolvimento , Proteínas com Domínio T/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Ciona intestinalis/crescimento & desenvolvimento , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genômica , Mesoderma/crescimento & desenvolvimento , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética
17.
PLoS Comput Biol ; 15(3): e1006794, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30856174

RESUMO

A fundamental assumption, common to the vast majority of high-throughput transcriptome analyses, is that the expression of most genes is unchanged among samples and that total cellular RNA remains constant. As the number of analyzed experimental systems increases however, different independent studies demonstrate that this assumption is often violated. We present a calibration method using RNA spike-ins that allows for the measurement of absolute cellular abundance of RNA molecules. We apply the method to pooled RNA from cell populations of known sizes. For each transcript, we compute a nominal abundance that can be converted to absolute by dividing by a scale factor determined in separate experiments: the yield coefficient of the transcript relative to that of a reference spike-in measured with the same protocol. The method is derived by maximum likelihood theory in the context of a complete statistical model for sequencing counts contributed by cellular RNA and spike-ins. The counts are based on a sample from a fixed number of cells to which a fixed population of spike-in molecules has been added. We illustrate and evaluate the method with applications to two global expression data sets, one from the model eukaryote Saccharomyces cerevisiae, proliferating at different growth rates, and differentiating cardiopharyngeal cell lineages in the chordate Ciona robusta. We tested the method in a technical replicate dilution study, and in a k-fold validation study.


Assuntos
Funções Verossimilhança , Modelos Estatísticos , Análise de Sequência de RNA/normas , Animais , Calibragem , Ciona/embriologia , Ciona/genética , Expressão Gênica , Genes Fúngicos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , RNA Fúngico/genética , Saccharomyces cerevisiae/genética
18.
Dev Biol ; 448(2): 199-209, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635127

RESUMO

In vertebrate embryos, the cardiopharyngeal mesoderm gives rise to both cardiac and branchiomeric head muscles. The canonical Wnt signaling pathway regulates many aspects of cardiomyocyte specification, and modulates a balance between skeletal and cardiac myogenesis during vertebrate head muscle development. However, the role of Wnt signaling during ascidian cardiopharyngeal development remains elusive. Here, we documented the expression of Wnt pathway components during cardiopharyngeal development in Ciona, and generated tools to investigate potential roles for Wnt signaling, and its transcriptional effector Tcf, on heart vs. pharyngeal muscle fate specification. Neither focused functional analyses nor lineage-specific transcriptome profiling uncovered a significant role for Tcf during early cardiac vs. pharyngeal muscle fate choice. By contrast, Wnt gene expression patterns of Frizzled4 and Lrp4/8 and CRISPR/Cas9-mediated Tcf knock-down suggested a later requirement for Wnt signaling during heart morphogenesis and/or cardiomyocyte differentiation. This study provides a provisional set of reagents to study Wnt signaling function in Ciona, and promising insights for future analyses of Wnt functions during heart organogenesis.


Assuntos
Ciona intestinalis/embriologia , Ciona intestinalis/genética , Coração/embriologia , Fatores de Transcrição TCF/metabolismo , Proteínas Wnt/metabolismo , Animais , Padronização Corporal/genética , Linhagem da Célula/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Faringe/embriologia , Fatores de Transcrição TCF/genética , Transcriptoma/genética , Regulação para Cima/genética , Proteínas Wnt/genética , Via de Sinalização Wnt/genética
19.
Nat Commun ; 10(1): 57, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30610187

RESUMO

Integrated analyses of regulated effector genes, cellular processes, and extrinsic signals are required to understand how transcriptional networks coordinate fate specification and cell behavior during embryogenesis. Ciona cardiopharyngeal progenitors, the trunk ventral cells (TVCs), polarize as leader and trailer cells that migrate between the ventral epidermis and trunk endoderm. We show that the TVC-specific collagen-binding Discoidin-domain receptor (Ddr) cooperates with Integrin-ß1 to promote cell-matrix adhesion. We find that endodermal cells secrete a collagen, Col9-a1, that is deposited in the basal epidermal matrix and promotes Ddr activation at the ventral membrane of migrating TVCs. A functional antagonism between Ddr/Intß1-mediated cell-matrix adhesion and Vegfr signaling appears to modulate the position of cardiopharyngeal progenitors between the endoderm and epidermis. We show that Ddr promotes leader-trailer-polarized BMP-Smad signaling independently of its role in cell-matrix adhesion. We propose that dual functions of Ddr integrate transcriptional inputs to coordinate subcellular processes underlying collective polarity and migration.


Assuntos
Movimento Celular , Polaridade Celular , Ciona/citologia , Receptores com Domínio Discoidina/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/fisiologia , Diferenciação Celular , Linhagem da Célula , Junções Célula-Matriz , Colágeno/metabolismo , Receptores com Domínio Discoidina/metabolismo , Desenvolvimento Embrionário , Integrina beta1/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Proteínas Smad/fisiologia
20.
Dev Biol ; 448(2): 111-118, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30471267

RESUMO

Through a myriad of pigments stored in different cells, animal pigmentation represents a crucial process to face disparate environmental and ecological challenges. In vertebrates, the small GTPase Rab32 and Rab38 have a conserved role in the transport of key melanogenic enzymes, as tyrosinase (tyr) and tyrosinase-related protein (tyrp), to the melanosomes in formation. We provide a survey on Rab32/38 evolution and its regulatory logics during pigment cell formation in Ciona robusta. Our phylogeny supports the existence of a single Rab32/38 gene in tunicates, which is probably the unique transporter for tyrosinase family members in this clade. Different deletions allow us to identify the minimal cis-regulatory element able to recapitulate the endogenous gene expression during pigment cell development in C. robusta. In this conserved region, we identified two putative binding sites for the transcription factor Mitf, which is known for its role as regulator of pigmentation in vertebrates. Mutational analysis revealed that both Mitf binding sites are essential for the activity of this regulatory region and we demonstrated that Mitf misexpression is able to induce ectopic activation of the Rab32/38 regulatory region in vivo. Our results strongly indicate that Mitf is involved in the regulation of Rab32/38 activity during Ciona pigment cell development.


Assuntos
Biomarcadores/metabolismo , Ciona intestinalis/citologia , Ciona intestinalis/genética , Regulação da Expressão Gênica , Pigmentação/genética , Transcrição Gênica , Proteínas rab de Ligação ao GTP/genética , Animais , Sequência de Bases , Sítios de Ligação , Evolução Molecular , Fator de Transcrição Associado à Microftalmia/metabolismo , Notocorda/metabolismo , Filogenia , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...