Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(19): 4276-4286, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37668159

RESUMO

Current single-cell technologies require large and expensive equipment, limiting their use to specialized labs. In this paper, we present for the first time a microfluidic device which demonstrates a combined method for full-electric cell capturing, analyzing, and selectively releasing with single-cell resolution. All functionalities are experimentally demonstrated on Saccharomyces cerevisiae. Our microfluidic platform consists of traps centered around a pair of individually accessible coplanar electrodes, positioned under a microfluidic channel. Using this device, we validate our novel Two-Voltage method for trapping single cells by positive dielectrophoresis (pDEP). Cells are attracted to the trap when a high voltage (VH) is applied. A low voltage (VL) holds the already trapped cell in place without attracting additional cells, allowing full control over the number of trapped cells. After trapping, the cells are analyzed by broadband electrochemical impedance spectroscopy. These measurements allow the detection of single cells and the extraction of cell parameters. Additionally, these measurements show a strong correlation between average phase change and cell size, enabling the use of our system for size measurements in biological applications. Finally, our device allows selectively releasing trapped cells by turning off the pDEP signal in their trap. The experimental results show the techniques potential as a full-electric single-cell analysis tool with potential for miniaturization and automation which opens new avenues towards small-scale, high throughput single-cell analysis and sorting lab-on-CMOS devices.


Assuntos
Espectroscopia Dielétrica , Microfluídica , Automação , Movimento Celular , Tamanho Celular , Saccharomyces cerevisiae
3.
Bioeng Transl Med ; 8(3): e10468, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206246

RESUMO

Cartilage microtissues are promising tissue modules for bottom up biofabrication of implants leading to bone defect regeneration. Hitherto, most of the protocols for the development of these cartilaginous microtissues have been carried out in static setups, however, for achieving higher scales, dynamic process needs to be investigated. In the present study, we explored the impact of suspension culture on the cartilage microtissues in a novel stirred microbioreactor system. To study the effect of the process shear stress, experiments with three different impeller velocities were carried out. Moreover, we used mathematical modeling to estimate the magnitude of shear stress on the individual microtissues during dynamic culture. Identification of appropriate mixing intensity allowed dynamic bioreactor culture of the microtissues for up to 14 days maintaining microtissue suspension. Dynamic culture did not affect microtissue viability, although lower proliferation was observed as opposed to the statically cultured ones. However, when assessing cell differentiation, gene expression values showed significant upregulation of both Indian Hedgehog (IHH) and collagen type X (COLX), well known markers of chondrogenic hypertrophy, for the dynamically cultured microtissues. Exometabolomics analysis revealed similarly distinct metabolic profiles between static and dynamic conditions. Dynamic cultured microtissues showed a higher glycolytic profile compared with the statically cultured ones while several amino acids such as proline and aspartate exhibited significant differences. Furthermore, in vivo implantations proved that microtissues cultured in dynamic conditions are functional and able to undergo endochondral ossification. Our work demonstrated a suspension differentiation process for the production of cartilaginous microtissues, revealing that shear stress resulted to an acceleration of differentiation towards hypertrophic cartilage.

4.
Water Res X ; 17: 100162, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36479239

RESUMO

Amyloid adhesins are ß-sheet-rich extracellular proteins thought to contribute to bioflocculation. They are present in activated sludge to varying extent. However, it remains unclear which operational conditions promote their production. To this end, the abundance and distribution of amyloids and their potential producers were monitored in two lab-scale reactors operated in sequencing batch mode with an unaerated and aerated reaction phase. Various feeding regimes ranging from feast-famine to nearly continuous feeding were applied. Thioflavin T staining revealed more amyloids in the lab-scale reactors during all operational stages compared to the full-scale industrial and municipal inocula. Furthermore, the feeding regime impacted the distribution of produced amyloids from dense clusters during feast-famine conditions towards a dispersed distribution during nearly continuous feeding. This dispersed presence did not negatively impact the bioflocculation (towards average floc size and shear sensitivity). 16S rRNA sequencing detected several known EPS and amyloid producers. More continuous and, hence, partially aerobic feeding promoted the relative abundance of denitrifiers. Sequential Thioflavin T staining and fluorescence in situ hybridization identified Zoogloea and Ca. Competibacter as potential amyloid producers under the applied conditions. This experiment confirms that amyloid producers need to be triggered for production and that the feeding regime impacts the microbial community composition, which in turn influences the amyloid production and distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...