Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 4549, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315901

RESUMO

Germline pathogenic variants in DNMT3A were recently described in patients with overgrowth, obesity, behavioral, and learning difficulties (DNMT3A Overgrowth Syndrome/DOS). Somatic mutations in the DNMT3A gene are also the most common cause of clonal hematopoiesis, and can initiate acute myeloid leukemia (AML). Using whole genome bisulfite sequencing, we studied DNA methylation in peripheral blood cells of 11 DOS patients and found a focal, canonical hypomethylation phenotype, which is most severe with the dominant negative DNMT3AR882H mutation. A germline mouse model expressing the homologous Dnmt3aR878H mutation phenocopies most aspects of the human DOS syndrome, including the methylation phenotype and an increased incidence of spontaneous hematopoietic malignancies, suggesting that all aspects of this syndrome are caused by this mutation.


Assuntos
Anormalidades Múltiplas/genética , DNA (Citosina-5-)-Metiltransferases/genética , Epigênese Genética , Anormalidades Múltiplas/sangue , Adolescente , Adulto , Animais , Comportamento Animal , Peso Corporal/genética , Células da Medula Óssea/metabolismo , Criança , Pré-Escolar , Ilhas de CpG/genética , Metilação de DNA/genética , DNA Metiltransferase 3A , Feminino , Perfilação da Expressão Gênica , Mutação em Linhagem Germinativa/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lactente , Leucemia/genética , Leucemia/patologia , Masculino , Camundongos Endogâmicos C57BL , Obesidade/genética , Fenótipo , Síndrome , Transcrição Gênica
2.
Cell Rep ; 33(8): 108416, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33238114

RESUMO

Mutations in DNA methyltransferase 3A (DNMT3A) have been detected in autism and related disorders, but how these mutations disrupt nervous system function is unknown. Here, we define the effects of DNMT3A mutations associated with neurodevelopmental disease. We show that diverse mutations affect different aspects of protein activity but lead to shared deficiencies in neuronal DNA methylation. Heterozygous DNMT3A knockout mice mimicking DNMT3A disruption in disease display growth and behavioral alterations consistent with human phenotypes. Strikingly, in these mice, we detect global disruption of neuron-enriched non-CG DNA methylation, a binding site for the Rett syndrome protein MeCP2. Loss of this methylation leads to enhancer and gene dysregulation that overlaps with models of Rett syndrome and autism. These findings define the effects of DNMT3A haploinsufficiency in the brain and uncover disruption of the non-CG methylation pathway as a convergence point across neurodevelopmental disorders.


Assuntos
DNA Metiltransferase 3A/metabolismo , Epigenômica/métodos , Transtornos do Neurodesenvolvimento/genética , Animais , Haploinsuficiência , Humanos , Camundongos
3.
Mol Cell ; 77(2): 279-293.e8, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31784360

RESUMO

The genomes of mammalian neurons contain uniquely high levels of non-CG DNA methylation that can be bound by the Rett syndrome protein, MeCP2, to regulate gene expression. How patterns of non-CG methylation are established in neurons and the mechanism by which this methylation works with MeCP2 to control gene expression is unclear. Here, we find that genes repressed by MeCP2 are often located within megabase-scale regions of high non-CG methylation that correspond with topologically associating domains of chromatin folding. MeCP2 represses enhancers found in these domains that are enriched for non-CG and CG methylation, with the strongest repression occurring for enhancers located within MeCP2-repressed genes. These alterations in enhancer activity provide a mechanism for how MeCP2 disruption in disease can lead to widespread changes in gene expression. Hence, we find that DNA topology can shape non-CG DNA methylation across the genome to dictate MeCP2-mediated enhancer regulation in the brain.


Assuntos
Cromossomos/genética , Metilação de DNA/genética , Elementos Facilitadores Genéticos/genética , Proteína 2 de Ligação a Metil-CpG/genética , Proteínas Repressoras/genética , Animais , Encéfalo/fisiologia , Feminino , Regulação da Expressão Gênica/genética , Genoma/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos
4.
Neuropsychopharmacology ; 44(2): 364-371, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29760410

RESUMO

Despite years of research, our understanding of the mechanisms by which inflammation induces depression is still limited. As clinical data points to a strong association between depression and motivational alterations, we sought to (1) characterize the motivational changes that are associated with inflammation in mice, and (2) determine if they depend on inflammation-induced activation of indoleamine 2,3 dioxygenase-1 (IDO1). Lipopolysaccharide (LPS)-treated or spared nerve injured (SNI) wild type (WT) and Ido1-/- mice underwent behavioral tests of antidepressant activity (e.g., forced swim test) and motivated behavior, including assessment of (1) reward expectancy using a food-related anticipatory activity task, (2) willingness to work for reward using a progressive ratio schedule of food reinforcement, (3) effort allocation using a concurrent choice task, and (4) ability to associate environmental cues with reward using conditioned place preference. LPS- and SNI-induced deficits in behavioral tests of antidepressant activity in WT but not Ido1-/- mice. Further, LPS decreased food related-anticipatory activity, reduced performance in the progressive ratio task, and shifted effort toward the preferred reward in the concurrent choice task. These effects were observed in both WT and Ido1-/- mice. Finally, SNI mice developed a conditioned place preference based on relief from pain in an IDO1-independent manner. These findings demonstrate that the motivational effects of inflammation do not require IDO1. Further, they indicate that the motivational component of inflammation-induced depression is mechanistically distinct from that measured by behavioral tests of antidepressant activity.


Assuntos
Comportamento Animal/fisiologia , Depressão/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/metabolismo , Motivação/fisiologia , Animais , Encéfalo , Comportamento de Escolha/fisiologia , Condicionamento Operante/fisiologia , Depressão/induzido quimicamente , Depressão/etiologia , Modelos Animais de Doenças , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Inflamação/induzido quimicamente , Inflamação/complicações , Lipopolissacarídeos , Camundongos , Camundongos Knockout , Esquema de Reforço , Recompensa
5.
Cancer Res ; 78(3): 695-705, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29217760

RESUMO

Fatigue is the most common symptom of cancer at diagnosis, yet causes and effective treatments remain elusive. As tumors can be highly inflammatory, it is generally accepted that inflammation mediates cancer-related fatigue. However, evidence to support this assertion is mostly correlational. In this study, we directly tested the hypothesis that fatigue results from propagation of tumor-induced inflammation to the brain and activation of the central proinflammatory cytokine, IL1. The heterotopic syngeneic murine head and neck cancer model (mEER) caused systemic inflammation and increased expression of Il1b in the brain while inducing fatigue-like behaviors characterized by decreased voluntary wheel running and exploratory activity. Expression of Il1b in the brain was not associated with any alterations in motivation, measured by responding in a progressive ratio schedule of food reinforcement, depression-like behaviors, or energy balance. Decreased wheel running occurred prior to Il1b detection in the brain, when systemic inflammation was minimal. Furthermore, mice null for two components of IL1ß signaling, the type 1 IL1 receptor or the receptor adapter protein MyD88, were not protected from tumor-induced decreases in wheel running, despite attenuated cytokine action and expression. Behavioral and inflammatory analysis of four additional syngeneic tumor models revealed that tumors can induce fatigue regardless of their systemic or central nervous system inflammatory potential. Together, our results show that brain IL1 signaling is not necessary for tumor-related fatigue, dissociating this type of cancer sequela from systemic cytokine expression.Significance: These findings challenge the current understanding of fatigue in cancer patients, the most common and debilitating sequela associated with malignancy. Cancer Res; 78(3); 695-705. ©2017 AACR.


Assuntos
Encéfalo/patologia , Fadiga/etiologia , Neoplasias de Cabeça e Pescoço/complicações , Inflamação/etiologia , Interleucina-1beta/metabolismo , Fator 88 de Diferenciação Mieloide/fisiologia , Receptores Tipo I de Interleucina-1/fisiologia , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Fadiga/metabolismo , Fadiga/patologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Transdução de Sinais
6.
Psychoneuroendocrinology ; 79: 59-66, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28259044

RESUMO

Patients with cancer often experience a high symptom burden prior to the start of treatment. As disease- and treatment-related neurotoxicities appear to be additive, targeting disease-related symptoms may attenuate overall symptom burden for cancer patients and improve the tolerability of treatment. It has been hypothesized that disease-related symptoms are a consequence of tumor-induced inflammation. We tested this hypothesis using a syngeneic heterotopic murine model of human papilloma virus (HPV)-related head and neck cancer. This model has the advantage of being mildly aggressive and not causing cachexia or weight loss. We previously showed that this tumor leads to increased IL-6, IL-1ß, and TNF-α expression in the liver and increased IL-1ß expression in the brain. The current study confirmed these features and demonstrated that the tumor itself exhibits high inflammatory cytokine expression (e.g., IL-6, IL-1ß, and TNF-α) compared to healthy tissue. While there is a clear relationship between cytokine levels and behavioral deficits in this model, the behavioral changes are surprisingly mild. Therefore, we sought to confirm the relationship between behavior and inflammation by amplifying the effect using a low dose of lipopolysaccharide (LPS, 0.1mg/kg). In tumor-bearing mice LPS induced deficits in nest building, tail suspension, and locomotor activity approximately 24h after LPS. However, these mice did not display an exacerbation of LPS-induced weight loss, anorexia, or anhedonia. Further, while heightened serum IL-6 was observed there was minimal priming of liver or brain cytokine expression. Next we sought to inhibit tumor-induced burrowing deficits by reducing inflammation using minocycline. Minocycline (∼50mg/kg/day in drinking water) was able to attenuate tumor-induced inflammation and burrowing deficits. These data provide evidence in favor of an inflammatory-like mechanism for the behavioral alterations associated with tumor growth in a syngeneic murine model of HPV-related head and neck cancer. However, the inflammatory state and behavioral changes induced by this tumor clearly differ from other forms of inflammation-induced sickness behavior.


Assuntos
Citocinas/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Comportamento de Doença , Papillomaviridae , Animais , Modelos Animais de Doenças , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Neuroimunomodulação
7.
J Neurosci ; 35(11): 4515-27, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25788670

RESUMO

Sensory information acquires meaning to adaptively guide behaviors. Despite odors mediating a number of vital behaviors, the components of the olfactory system responsible for assigning meaning to odors remain unclear. The olfactory tubercle (OT), a ventral striatum structure that receives monosynaptic input from the olfactory bulb, is uniquely positioned to transform odor information into behaviorally relevant neural codes. No information is available, however, on the coding of odors among OT neurons in behaving animals. In recordings from mice engaged in an odor discrimination task, we report that the firing rate of OT neurons robustly and flexibly encodes the valence of conditioned odors over identity, with rewarded odors evoking greater firing rates. This coding of rewarded odors occurs before behavioral decisions and represents subsequent behavioral responses. We predict that the OT is an essential region whereby odor valence is encoded in the mammalian brain to guide goal-directed behaviors.


Assuntos
Aprendizagem por Discriminação/fisiologia , Odorantes , Tubérculo Olfatório/fisiologia , Olfato/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estriado Ventral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...