Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276704

RESUMO

Throughout the current SARS-CoV-2 pandemic, limited diagnostic testing capacity prevented sentinel testing of the population, demonstrating the need for novel testing strategies and infrastructures. Here, we describe the set-up of an alternative testing platform, which allows scalable surveillance testing as an acute pandemic response tool and for pandemic preparedness purposes, exemplified by SARS-CoV-2 diagnostics in an academic environment. The testing strategy involves self-sampling based on gargling saline, pseudonymized sample handling, automated 96-well plate-based RNA extraction, and viral RNA detection using a semi-quantitative multiplexed colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay with an analytical sensitivity comparable to RT-quantitative polymerase chain reaction (RT-qPCR). We provide standard operating procedures and an integrated software solution for all workflows, including sample logistics, LAMP assay analysis by colorimetry or by sequencing (LAMP-seq), and communication of results to participants and the health authorities. Using large sample sets including longitudinal sample series we evaluated factors affecting the viral load and the stability of gargling samples as well as the diagnostic sensitivity of the RT-LAMP assay. We performed >35,000 tests during the pandemic, with an average turnover time of fewer than 6 hours from sample arrival at the test station to result announcement. Altogether, our work provides a blueprint for fast, sensitive, scalable, cost- and labor-efficient RT-LAMP diagnostics. As RT-LAMP-based testing requires advanced, but non-specialized laboratory equipment, it is independent of potentially limiting clinical diagnostics supply chains. One-sentence summaryA blueprint for scalable RT-LAMP test capacity for the sensitive detection of viral genomes demonstrated by SARS-CoV-2 surveillance testing.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21254849

RESUMO

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are replacing the initial wild-type strain, jeopardizing current efforts to contain the pandemic. Amino acid exchanges in the spike protein are of particular concern as they can render the virus more transmissible or reduce vaccine efficacy. Here, we conducted whole genome sequencing of SARS-CoV-2 positive samples from the Rhine-Neckar district in Germany during January-March 2021. We detected a total of 166 samples positive for a variant with a distinct mutational pattern in the spike gene comprising L18F, L452R, N501Y, A653V, H655Y, D796Y and G1219V with a later gain of A222V. This variant was designated A.27.RN according to its phylogenetic clade classification. It emerged in parallel with the B.1.1.7 variant, increased to >50% of all SARS-CoV-2 variants by week five. Subsequently it decreased to <10% of all variants by calendar week eight when B.1.1.7 had become the dominant strain. Antibodies induced by BNT162b2 vaccination neutralized A.27.RN but with a two-to-threefold reduced efficacy as compared to the wild-type and B.1.1.7 strains. These observations strongly argue for continuous and comprehensive monitoring of SARS-CoV-2 evolution on a population level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...