Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis ; 17(5): 9, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28510624

RESUMO

Interocular-switch rivalry (also known as stimulus rivalry) is a kind of binocular rivalry in which two rivalrous images are swapped between the eyes several times a second. The result is stable periods of one image and then the other, with stable intervals that span many eye swaps (Logothetis, Leopold, & Sheinberg, 1996). Previous work used this close kin of binocular rivalry with rivalrous forms. Experiments here test whether chromatic interocular-switch rivalry, in which the swapped stimuli differ in only chromaticity, results in slow alternation between two colors. Swapping equiluminant rivalrous chromaticities at 3.75 Hz resulted in slow perceptual color alternation, with one or the other color often continuously visible for two seconds or longer (during which there were 15+ eye swaps). A well-known theory for sustained percepts from interocular-switch rivalry with form is inhibitory competition between binocular neurons driven by monocular neurons with matched orientation tuning in each eye; such binocular neurons would produce a stable response when a given orientation is swapped between the eyes. A similar model can account for the percepts here from chromatic interocular-switch rivalry and is underpinned by the neurophysiological finding that color-preferring binocular neurons are driven by monocular neurons from each eye with well-matched chromatic selectivity (Peirce, Solomon, Forte, & Lennie, 2008). In contrast to chromatic interocular-switch rivalry, luminance interocular-switch rivalry with swapped stimuli that differ in only luminance did not result in slowly alternating percepts of different brightnesses.


Assuntos
Percepção de Cores/fisiologia , Disparidade Visual/fisiologia , Visão Binocular/fisiologia , Humanos , Estimulação Luminosa
2.
PLoS One ; 9(5): e94744, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788941

RESUMO

Spatial features of an object can be specified using two different response types: either by use of symbols or motorically by directly acting upon the object. Is this response dichotomy reflected in a dual representation of the visual world: one for perception and one for action? Previously, symbolic and motoric responses, specifying location, has been shown to rely on a common representation. What about more elaborate features such as length and orientation? Here we show that when motoric and symbolic responses are made within the same trial, the probability of making the same symbolic and motoric response is well above chance for both length and orientation. This suggests that motoric and symbolic responses to length and orientation are driven by a common representation. We also show that, for both response types, the spatial features of an object are processed independently. This finding of matching object-processing characteristics is also in agreement with the idea of a common representation driving both response types.


Assuntos
Força da Mão , Julgamento/fisiologia , Percepção Espacial/fisiologia , Adulto , Feminino , Humanos , Masculino , Atividade Motora/fisiologia , Estimulação Luminosa , Tempo de Reação/fisiologia , Adulto Jovem
3.
J Vis ; 14(4)2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24744449

RESUMO

When seen in isolation, a light that varies in chromaticity over time is perceived to oscillate in color. Perception of that same time-varying light may be altered by a surrounding light that is also temporally varying in chromaticity. The neural mechanisms that mediate these contextual interactions are the focus of this article. Observers viewed a central test stimulus that varied in chromaticity over time within a larger surround that also varied in chromaticity at the same temporal frequency. Center and surround were presented either to the same eye (monocular condition) or to opposite eyes (dichoptic condition) at the same frequency (3.125, 6.25, or 9.375 Hz). Relative phase between center and surround modulation was varied. In both the monocular and dichoptic conditions, the perceived modulation depth of the central light depended on the relative phase of the surround. A simple model implementing a linear combination of center and surround modulation fit the measurements well. At the lowest temporal frequency (3.125 Hz), the surround's influence was virtually identical for monocular and dichoptic conditions, suggesting that at this frequency, the surround's influence is mediated primarily by a binocular neural mechanism. At higher frequencies, the surround's influence was greater for the monocular condition than for the dichoptic condition, and this difference increased with temporal frequency. Our findings show that two separate neural mechanisms mediate chromatic contextual interactions: one binocular and dominant at lower temporal frequencies and the other monocular and dominant at higher frequencies (6-10 Hz).


Assuntos
Percepção de Cores/fisiologia , Visão Binocular/fisiologia , Visão Monocular/fisiologia , Vias Visuais/fisiologia , Percepção de Profundidade , Humanos , Luz , Neurônios Retinianos/fisiologia
4.
J Vis ; 9(5): 26.1-10, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19757904

RESUMO

In natural viewing, an object's background often changes over time. Temporally varying backgrounds were investigated here with a steady test field within a time-varying surrounding chromaticity. With slow surround variation (below approximately 3 Hz), the color appearance of a steady test is also perceived to fluctuate. At somewhat higher temporal frequencies, however, temporal variation of the surround is visible but the test appears steady (R. L. De Valois, M. A. Webster, K. K. De Valois, & B. Lingelbach, 1986); also above approximately 3 Hz, temporal chromatic variation along the l- or s-axis of the MacLeod-Boynton space (symmetric about equal-energy-spectrum "white") shifts the steady appearance of the test field toward redness or yellowness, respectively (A. D. D'Antona & S. K. Shevell, 2006). In the study here, color shifts were measured with temporal surround modulation at 6 Hz or greater along axes intermediate to the l and s directions. Varying the relative phase of simultaneous surround variation in l and s should not change responses within independent l and s pathways but should differentially excite neural representations that combine l and s signals (so-called higher order chromatic mechanisms). Varying the phase of l and s showed that the induced color shifts were accounted for by neural responses both from nearly independent l and s pathways and from higher order chromatic mechanisms.


Assuntos
Adaptação Ocular/fisiologia , Percepção de Cores/fisiologia , Visão de Cores/fisiologia , Iluminação , Vias Visuais/fisiologia , Adulto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...