Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Sci Total Environ ; 919: 170956, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365030

RESUMO

Nitrate (NO3-) removal in denitrifying bioreactors is influenced by flow, water chemistry, and design, but it is not known how these widely varying factors impact the production of nitrous oxide (N2O) or methane (CH4) across sites. Woodchip bioreactors link the hydrosphere and atmosphere in this respect, so five full-size bioreactors in Illinois, USA, were monitored for NO3-, N2O, and CH4 to better document where this water treatment technology resides along the pollution swapping to climate smart spectrum. Both surface fluxes and dissolved forms of N2O and CH4 were measured (n = 7-11 sampling campaigns per site) at bioreactors ranging from <1 to nearly 5 years old and treating subsurface drainage areas from between 6.9 and 29 ha. Across all sites, N2O surface and dissolved volumetric production rates averaged 1.0 ± 1.6 mg N2O-N/m3-d and 24 ± 62 mg dN2O-N/m3-d, respectively, and CH4 production rates averaged 6.0 ± 26 mg CH4-C/m3-d and 310 ± 520 mg dCH4-C/m3-d for surface and dissolved, respectively. However, N2O was consistently consumed at one bioreactor, and only three of the five sites produced notable CH4. Surface fluxes of CH4 were significantly reduced by the presence of a soil cover. Bioreactor denitrification was relatively efficient, with only 0.51 ± 3.5 % of removed nitrate emitted as N2O (n = 48). Modeled indirect N2O emissions factors were significantly lower when a bioreactor was present versus absent (EF5: 0.0055 versus 0.0062 kg N2O-N/kg NO3-N; p = 0.0011). While further greenhouse gas research on bioreactors is recommended, this should not be used as an excuse to slow adoption efforts. Bioreactors provide a practical option for voluntary water quality improvement in the heavily tile-drained US Midwest and elsewhere.


Assuntos
Gases de Efeito Estufa , Óxido Nitroso , Óxido Nitroso/análise , Nitratos , Reatores Biológicos , Metano/análise
2.
J Environ Manage ; 352: 120054, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38211432

RESUMO

Adoption of edge-of-field conservation practices, such as denitrifying bioreactors, may be intrinsically linked to barriers associated with cost. However, most previous bioreactor cost efficiency assessments assumed values for either costs and/or nitrate removal. The objective of this work was to use actual construction costs as well as monitored nitrate removal to develop empirical cost efficiencies for eight full-size bioreactors in Illinois, USA. Capital construction costs were obtained via invoices or personal communications. A cash-flow discounting procedure was used to develop an equal annualized cost for each bioreactor assuming two media recharges over a 24-y planning horizon. These costs were combined with monitored nitrate removal based on one to six years of monitoring per site. Construction costs averaged $12,250 ± $7520 across the eight sites (or, $16,020 ± $9960 in 2023 price levels) but considering one of the sites was a paired bioreactor system, costs averaged $10,890 per bioreactor unit. Drainage treatment area-based cost averaged $132/ha-y and treatment area was strongly correlated with capital costs (R2 = 0.90; p = 0.001). The bioreactors averaged $108/m3 of woodchips and available federal government conservation programs could have offset an average of 70% of this cost. Monitored nitrate removal across 27 site-years resulted in a median of $33/kg N-y removed. This mass-based cost efficiency was higher than most previous assessments because the monitored nitrate removal for the study sites was lower than has been previously assumed or modeled. Future reporting about bioreactor recharge timing and cost will help guide assessment and planning. Water quality planning efforts should also consider the increasingly important engineering design costs, which were not included here. Suggested research and outreach to improve bioreactor cost efficiencies involves scaling the physical capacity of this technology for larger treatment areas, revisiting the use of low-cost non-standard fill media, and providing practical construction training.


Assuntos
Desnitrificação , Nitratos , Reatores Biológicos , Illinois
3.
J ASABE ; 65(2): 419-426, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35936107

RESUMO

This article introduces a Special Collection of literature reviews documenting the performance and cost-effectiveness of six agricultural conservation practices (ACPs): conservation crop rotation, cover crop, filter strip, nutrient management, denitrifying bioreactor, and constructed wetland. The overall objectives of the Special Collection are to: (1) review published studies on ACP effectiveness in reducing nutrient and sediment losses from agricultural fields; (2) compare, integrate, and synthesize the results from those studies to obtain a systematic understanding of the mitigation efficacy of each ACP in a consistent format across the selected ACPs; and (3) assemble cost analyses and obtain general insights on performance-based costs of the ACPs. The specific objectives of this introductory article are to summarize key information from each of the six review articles and develop a comparative understanding of the performance and cost-effectiveness of the six ACPs. Among the selected ACPs, denitrifying bioreactor, constructed wetland, cover crop, crop rotation, and nutrient management were all effective in reducing nitrate-N loads in subsurface drainage, with performance effectiveness in load reduction ranging from 23% to 40%. A corn-soybean rotation (relative to continuous corn) was the most cost-effective among the selected ACPs and can reduce nitrate-N load at a net benefit of about USD $5 per kg nitrate-N compared to continuous corn. Filter strip was most effective in reducing sediment, total nitrogen (N), and total phosphorus (P) loads from surface runoff and can be effective in reducing nitrate-N and dissolved P. Cover crop was also effective in reducing sediment and total P loads. Studies of the selected ACPs for their performance effectiveness for dissolved P are limited, and results varied among the ACPs included; thus, more research is needed relative to ACP effectiveness in reducing dissolved P loss, particularly in subsurface flow. Finally, although each review article included cost-analysis information, more data and analyses are needed to better understand the cost-effectiveness of ACPs and their ecological benefits.

4.
J Environ Manage ; 319: 115768, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35982568

RESUMO

Denitrifying bioreactors are a conservation drainage practice for reducing nitrate loads in subsurface agricultural drainage. Bioreactor hydraulic capacity is limited by cross-sectional area perpendicular to flow through the woodchip bed, with excess bypass flow untreated. Paired bioreactors with wide orientations were built in 2017 in Illinois, USA, to treat drainage from a relatively large 29 ha field. The paired design consisted of: a larger, Main bioreactor (LWD: 6.1 × 18.3 × 0.9 m) for treating base flow, and 2) a smaller, Booster bioreactor (7.8 × 13.1 × 0.9 m) receiving bypass flow from the Main bioreactor during periods of high flow. Over three years of monitoring, the paired bioreactor captured 84-92% of the annual drainage discharge which demonstrated an expanded cross-sectional area could improve bioreactor flow capture, even for a large drainage area. However, the paired bioreactors removed 6-28% of the annual N load leaving the field (1.8-5.6 kg N ha-1 removed; 52-161 kg N), which was not a notable improvement compared to bioreactors treating smaller drainage areas. The design operated as intended at low annual flow-weighted hydraulic retention times (HRTs) of usually ≤2 h, but these short HRTs ultimately limited bioreactor nitrate removal efficiency. Daily HRTs of <2 h often resulted in nitrate flushing. The Main bioreactor had higher hydraulic loading as intended and was responsible for the majority of flow captured in each year although not always the most nitrate mass removal. The Booster bioreactor provided better nitrate removal than the Main at HRTs of 3.0-11.9 h, possibly due to its drying cycles which may have liberated more available carbon. This new design approach tested at the field-scale illustrated tradeoffs between greater flow capacity (via increased bioreactor width) and longer HRT (via increased length), given a consistent bioreactor surface footprint.


Assuntos
Desnitrificação , Nitratos , Agricultura , Reatores Biológicos , Óxidos de Nitrogênio
5.
J Environ Qual ; 51(6): 1155-1167, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35946838

RESUMO

Agricultural phosphorus (P) loss, which is highly variable in space and time, has been studied using the hot spot/hot moment concept, but increasing the rigor of these assessments through a relatively newer "ecosystem control point" framework may help better target management practices that provide a disproportionate water quality benefit. Sixteen relatively large (0.85 ha) subsurface drainage plots in Illinois were used as individual observational units to assess dissolved reactive P (DRP) concentrations and losses within a given field over four study years. Three plot-months were identified as DRP control points (one export and two transport control points), where each plot-month contributed >10% of the annual DRP load from the field. These control points occurred on separate plots and in both the growing and nongrowing seasons but were likely related to agronomic P applications. Elevated soil test P, especially near a historic farmstead, and soil clay content were spatial drivers of P loss across the field. The nongrowing season was hypothesized to be the most significant period of P loss, but this was only documented in two of the four study years. A cereal rye (Secale cereale L.) cover crop did not significantly reduce DRP loss in any year, but there was also no evidence of increased drainage P losses due to freezing and thawing of the cover crop biomass. This work confirmed annual subsurface drainage DRP losses were agronomically small (<3% of P application rate), although the range of DRP concentrations relative to eutrophication criteria still demonstrated a potential for negative environmental impact. The control point concept may provide a new lens to view drainage DRP losses, but this framework should be refined through additional within-field studies because mechanisms of P export at this field were more nuanced than just the presence of tile drainage (i.e., a transport control point).


Assuntos
Ecossistema , Fósforo , Eutrofização , Solo , Agricultura
6.
J Environ Qual ; 51(3): 389-398, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35322433

RESUMO

There are few peer-reviewed studies documenting saturated buffer annual nitrate (NO3 ) removal or that have assessed the federal practice standard design criteria. Drainage flow, NO3 , and dissolved reactive phosphorus (DRP) were monitored at three saturated buffers in Illinois, USA, for a combined 10 site-years. Nitrate loss reduction averaged 48 ± 19% with removals of 3.5-25.2 kg NO3 -N ha-1 annually. Median DRP concentrations at all sampling locations were at the analytical detection limit of 0.01 mg L-1 . The current design paradigm (i.e., USDA practice standard) prescribes there should be no flow bypassing the saturated buffer at flow rates that are ≤5% of the peak drainage system flow rate. The drainage coefficient-based and Manning's equation-based peak flow estimates were higher and lower, respectively, than the observed annual peaks in all years. This illustrated inherent uncertainty introduced early in the design process, which can be further compounded by dynamic in-buffer hydrology. The percentage of the observed peak flow rate at which bypass initiated ranged across an order of magnitude between sites (4.4-8.1% of peak flow rate at one site and 42-49% of peak at another) despite the buffers providing relatively similar NO3 removal. Bypass at one site (SB2) was related to the concept of "antecedent buffer capacity filled," which was defined as the 5-d average water depth in the middle control structure chamber expressed as a relative percentage of the bypass stop log height. This design flow analysis serves as a call to further evaluate predictive relationships and design models for edge-of-field practices.


Core Ideas Three saturated buffers in Illinois provided an ≈50% annual reduction in NO3 load. Observed peak flow rates differed from estimation methods used for design purposes. Two sites had relatively similar nitrate removals but different bypass trends. "Antecedent buffer capacity filled" was the water depth in the middle chamber as a percent of stop log height.


Assuntos
Monitoramento Ambiental , Nitratos , Agricultura , Hidrologia , Illinois , Nitratos/análise , Nitrogênio/análise , Fósforo/análise
7.
Environ Sci Pollut Res Int ; 29(5): 6733-6743, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34460085

RESUMO

Denitrifying woodchip bioreactors are a practical nitrogen (N) mitigation technology but evaluating the potential for bioreactor phosphorus (P) removal is highly relevant given that (1) agricultural runoff often contains N and P, (2) very low P concentrations cause eutrophication, and (3) there are few options for removing dissolved P once it is in runoff. A series of batch tests evaluated P removal by woodchips that naturally contained a range of metals known to sorb P and then three design and environmental factors (water matrix, particle size, initial dissolved reactive phosphorus (DRP) concentration). Woodchips with the highest aluminum and iron content provided the most dissolved P removal (13±2.5 mg DRP removed/kg woodchip). However, poplar woodchips, which had low metals content, provided the second highest removal (12±0.4 mg/kg) when they were tested with P-dosed river water which had a relatively complex water matrix. Chemical P sorption due to woodchip elements may be possible, but it is likely one of a variety of P removal mechanisms in real-world bioreactor settings. Scaling the results indicated bioreactors could remove 0.40 to 13 g DRP/ha. Woodchip bioreactor dissolved P removal will likely be small in magnitude, but any such contribution is an added-value benefit of this denitrifying technology.


Assuntos
Desnitrificação , Fósforo , Reatores Biológicos , Nitratos , Água , Madeira
8.
J Environ Qual ; 50(6): 1408-1418, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34390507

RESUMO

Artificial subsurface drainage is essential to sustain crop production in many areas but may also impair water quality by exacerbating nitrate (NO3 )-nitrogen (N) delivery downstream. Cover crops and split-N application have been promoted as key conservation practices for reducing NO3 -N losses, but few studies have simultaneously assessed their effect on water quality and crop productivity. A field study was conducted to evaluate the effects of N application timing and cover crops on subsurface drainage NO3 -N losses and grain yield in continuous corn (Zea mays L.). Treatments were preplant-N: 224 kg N ha-1 split-applied with 60% fall + 40% preplant in 2018, or as single preplant applications in 2019 and 2020; split-N: 40% preplant + 60% side-dress (V6-V7); split-N + cover crop (CC): Split-N + cereal rye (Secale cereale L.); and a zero N plot as the control. Across the 3-yr study period, split-N + CC significantly reduced flow-weighted NO3 -N concentration and NO3 -N loss by 35 and 37%, respectively, compared with preplant-N. However, flow-weighted NO3 -N concentration (4.3 mg L-1 ) and NO3 -N loss (22.4 kg ha-1 ) with split-N were not significantly different from either preplant-N (4.8 mg L-1 and 26.4 kg ha-1 , respectively) or split-N + CC (3.1 mg L-1 and 16.7 kg ha-1 , respectively). Corn yield was significantly lower in the control treatment but did not differ among N fertilized treatments in any year. These results indicate that combining split-N application with cover crops holds promise for meeting the statewide interim milestone NO3 -N reduction target of 15% by 2025 without negatively impacting crop productivity.


Assuntos
Nitrogênio , Zea mays , Agricultura , Fertilizantes/análise , Nitratos/análise , Nitrogênio/análise , Solo
9.
Sci Total Environ ; 755(Pt 1): 142401, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33017758

RESUMO

Woodchip bioreactors can effectively remove waterborne nitrates from subsurface agricultural drainage and prevent the eutrophication of receiving water, but rapid biofilm growth can severely reduce water flux and denitrification efficiency of this practice within a few years. Tourmaline minerals with thermal excitation could generate reactive oxygen species which would inhibit bacterial growth. In this study, laboratory scale woodchip bioreactors were set up to test the anti-clogging and denitrification efficiency of heated woodchips with tourmaline, heated woodchips without tourmaline, and unheated woodchips. The results showed that the heated tourmaline treatment could reduce the clogging and optimize the nitrate removal rate (47.6 g N/m3/day) under all three hydrologic retention times tested (1, 4, and 8 h). Dissolved oxygen and pH values fluctuated with the removal rate and temperature change, while temperature was identified as the key factor impacting the tourmaline treatment. The heated tourmaline treatment had the lowest biofilm growth (lowest DNA concentration), while the 16S rRNA and a higher abundance of nirS-, nirK-, and nosZ-encoding denitrifying bacteria (based on qPCR) confirmed the higher denitrification efficiency of the heated tourmaline treatment.

10.
J Environ Manage ; 272: 110996, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32854899

RESUMO

Woodchip bioreactors are a practical, low-cost technology for reducing nitrate (NO3) loads discharged from agriculture. Traditional methods of quantifying their performance in the field mostly rely on low-frequency, time-based (weekly to monthly sampling interval) or flow-weighted sample collection at the inlet and outlet, creating uncertainty in their performance and design by providing incomplete information on flow and water chemistry. To address this uncertainty, two field bioreactors were monitored in the US and New Zealand using high-frequency, multipoint sampling for in situ monitoring of NO3-N concentrations. High-frequency monitoring (sub hourly interval) at the inlet and outlet of both bioreactors revealed significant variability in volumetric removal rates and percent reduction, with percent reduction varying by up to 25 percentage points within a single flow event. Time series of inlet and outlet NO3 showed significant lag in peak concentrations of 1-3 days due to high hydraulic residence time, where calculations from instantaneous measurements produced erroneous estimates of performance and misleading relationships between residence time and removal. Internal porewater sampling wells showed differences in NO3 concentration between shallow and deep zones, and "hot spot" zones where peak NO3 removal co-occurred with dissolved oxygen depletion and dissolved organic carbon production. Tracking NO3 movement through the profile showed preferential flow occurring with slower flow in deeper woodchips, and slower flow further from the most direct flowpath from inlet to outlet. High-frequency, in situ data on inlet and outlet time series and internal porewater solute profiles of this initial work highlight several key areas for future research.


Assuntos
Reatores Biológicos , Desnitrificação , Nova Zelândia , Nitratos/análise , Viés de Seleção
11.
Environ Pollut ; 263(Pt A): 114618, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33618470

RESUMO

The increasing availability of water quality datasets has led to a greater focus on hydrologic and water quality analysis, thus requiring more efficient and accurate modelling methods. Data mining techniques have been increasingly used for water quality analysis and prediction of the concentration and load of nitrogen pollutants instead of more traditional simulation methods. In this study, we tested the multilayer perceptron (MLP), k-nearest neighbor (k-NN), random forest, and reduced error pruning tree (REPTree) methods, along with the traditional linear regression, to predict nitrate levels based on long-term data from six watersheds with different land-use practices in the midwestern United States. Both the concentration and load results indicated that REPTree had the best performance, with an R2 of 0.61-0.85 and a relative absolute error of <75.8%. The different watershed types, however, influenced the performance of the data mining methods, where all four methods showed a higher accuracy for urban dominant watershed and lower accuracy for agricultural and forest watersheds. Out of these four methods, classification tree methods (REPTree and RF) performed better than cluster methods (MLP and k-NN) for agricultural and forested watersheds. Our results indicated that both the data structure based on the dominant land use and type of algorithmic method should be carefully considered for selecting a data mining method to predict nitrate concentration and load for a watershed.


Assuntos
Agricultura , Nitratos , Mineração de Dados , Monitoramento Ambiental , Meio-Oeste dos Estados Unidos , Nitratos/análise , Qualidade da Água
12.
J Environ Qual ; 48(1): 93-101, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30640347

RESUMO

Woodchip bioreactors are widely used to control nitrogen export from agriculture using denitrification. There is abundant evidence that drying-rewetting (DRW) cycles can promote enhanced metabolic rates in soils. A 287-d experiment investigated the effects of weekly DRW cycles on nitrate (NO) removal in woodchip columns in the laboratory receiving constant flow of nitrated water. Columns were exposed to continuous saturation (SAT) or to weekly, 8-h drying-rewetting (8 h of aerobiosis followed by saturation) cycles (DRW). Nitrate concentrations were measured at the column outlets every 2 h using novel multiplexed sampling methods coupled to spectrophotometric analysis. Drying-rewetting columns showed greater export of total and dissolved organic carbon and increased NO removal rates. Nitrate removal rates in DRW columns increased by up to 80%, relative to SAT columns, although DRW removal rates decreased quickly within 3 d after rewetting. Increased NO removal in DRW columns continued even after 39 DRW cycles, with ∼33% higher total NO mass removed over each weekly DRW cycle. Data collected in this experiment provide strong evidence that DRW cycles can dramatically improve NO removal in woodchip bioreactors, with carbon availability being a likely driver of improved efficiency. These results have implications for hydraulic management of woodchip bioreactors and other denitrification practices.


Assuntos
Desnitrificação , Nitratos , Reatores Biológicos , Carbono , Nitrogênio
13.
J Environ Manage ; 206: 1072-1080, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30029341

RESUMO

Nutrients in drainage waters from the Upper Mississippi River Basin states have been a well-documented contributor to the Gulf of Mexico hypoxic zone for decades, and in response, twelve states have developed strategies to address this issue, with Iowa, Minnesota, and Illinois performing rigorous science assessments which estimated nitrogen and phosphorus reduction effectiveness for numerous agricultural non-point source conservation practices. The practices identified in these strategies were compared to identify areas of consensus and discord on nutrient load reduction potentials. Additionally, each practice was assessed for (1) the suitability to stack or be layered with other practices (stackability), (2) the ability to track implementation within a state or regionally (trackability), and (3) the level of production system change required to implement the practice. Overall, there was general consensus among the state strategies in the nutrient load reduction effectiveness of most practices with the exception of cover crops (10%-31% nitrogen reduction) and bioreactors (13%-43% nitrogen reduction). The most effective water quality-improvement practices (i.e., land-use change practices) required relatively more production system changes to agronomic management and were the most trackable (scores: 5, 1-5 scale), although they were also less stackable with other practices (scores: 1 to 1.8; 1-5 scale) and were the least cost effective on a unit area basis (generally $15 to $964 per ha). The most cost effective practices tended to be highly stackable (e.g., nitrogen management: (-)$49 per ha and stackability of 4.7), which indicated that stacking a variety of practices may be the most cost effective use of conservation dollars. The practices that were most difficult to track had relatively lower nitrogen loss reduction effectiveness, but these practices were less costly to implement and required relatively less production system change to agronomic management, two factors of importance to many producers.


Assuntos
Agricultura , Qualidade da Água , Golfo do México , Illinois , Iowa , Minnesota , Mississippi , Nitrogênio , Fósforo , Melhoria de Qualidade , Rios
14.
J Am Coll Health ; 66(1): 61-68, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28777705

RESUMO

Retrospective research from patients with schizophrenia suggests that remission becomes increasingly less likely the longer psychosis goes untreated. Yet symptoms of schizophrenia are insidious and disease evolution varies between patients, requiring an ongoing diagnostic process. One way of justifying early treatment is by focusing on functionality rather than symptomatology. Most patients are diagnosed with schizophrenia between the ages of 17 and 25-when many young adults are undergraduates or pursuing post-graduate education. The extent to which schools partner with mental health services has implications for the short-term success of students' recovery and their future employability. Translating study findings on schizophrenia to the college setting remains an important area of investigation.


Assuntos
Diagnóstico Precoce , Esquizofrenia/diagnóstico , Esquizofrenia/terapia , Estudantes/estatística & dados numéricos , Universidades/estatística & dados numéricos , Adolescente , Adulto , Feminino , Humanos , Masculino , Estudos Retrospectivos , Resultado do Tratamento , Ocidente , Adulto Jovem
15.
J Environ Manage ; 207: 269-275, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29179116

RESUMO

Nitrate and orthophosphate from agricultural activities contribute significantly to nutrient loading in surface water bodies around the world. This study evaluated the efficacy of woodchips and fly ash pellets in tandem to remove nitrate and orthophosphate from simulated agricultural runoff in flow-through tests. The fly ash pellets had previously been developed specifically for orthophosphate removal for this type of application, and the sorption bench testing showed a good promise for flow-through testing. The lab-scale horizontal-flow bioreactor used in this study consisted of an upstream column filled with woodchips followed by a downstream column filled with fly ash pellets (3 and 1 m lengths, respectively; both 0.15 m diameter). Using influent concentrations of 12 mg/L nitrate and 5 mg/L orthophosphate, the woodchip bioreactor section was able to remove 49-85% of the nitrate concentration at three hydraulic retention times ranging from 0.67 to 4.0 h. The nitrate removal rate for woodchips ranged from 40 to 49 g N/m3/d. Higher hydraulic retention times (i.e., smaller flow rates) corresponded with greater nitrate load reduction. The fly ash pellets showed relatively stable removal efficiency of 68-75% across all retention times. Total orthophosphate adsorption by the pellets was 0.059-0.114 mg P/g which was far less than the saturated capacity (1.69 mg/g; based on previous work). The fly ash pellets also removed some nitrate and the woodchips also removed some orthophosphate, but these reductions were not significant. Overall, woodchip denitrification followed by fly ash pellet P-sorption can be an effective treatment technology for nitrate and phosphate removal in subsurface drainage.


Assuntos
Reatores Biológicos , Cinza de Carvão , Fósforo , Desnitrificação , Nitratos
16.
J Environ Qual ; 46(4): 915-920, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28783781

RESUMO

Nitrate-nitrogen (nitrate-N) removal rates can be increased substantially in denitrifying bioreactors with a corn ( L.) cob bed medium compared with woodchips; however, additional organic carbon (C) is released into the effluent. This laboratory column experiment was conducted to test the performance of a postbed chamber of inert plastic biofilm carrier (PBC) after corn cobs (CC) to extend the area of biofilm colonization, enhance nitrate-N removal, lower total organic C losses, and reduce nitrous oxide (NO) production at warm (15.5°C) and cold (1.5°C) temperatures. Treatments were CC only and CC plus PBC in series (CC-PBC). Across the two temperatures, nitrate-N load removal was 21% greater with CC-PBC than CC, with 54 and 44% of total nitrate N load, respectively. However, total organic C concentrations and loads were not significantly different between treatments. Colonization of the PBC by denitrifiers occurred, although gene abundance at the outlet (PBC) was less than at the inlet (CC). The PBC chamber increased nitrate-N removal rate and reduced cumulative NO production at 15.5°C, but not at 1.5°C. Across temperatures and treatments, NO production was 0.9% of nitrate-N removed. Including an additional chamber filled with PBC downstream from the CC bioreactor provided benefits in terms nitrate-N removal but did not achieve C removal. The presence of excess C, as well as available nitrate, in the PBC chamber suggests another unidentified limiting factor for nitrate removal.


Assuntos
Biofilmes , Reatores Biológicos , Nitratos/química , Plásticos , Desnitrificação , Nitrogênio , Zea mays
17.
Water Res ; 121: 129-139, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28525785

RESUMO

Pairing denitrifying woodchip bioreactors and phosphorus-sorbing filters provides a unique, engineered approach for dual nutrient removal from waters impaired with both nitrogen (N) and phosphorus (P). This column study aimed to test placement of two P-filter media (acid mine drainage treatment residuals and steel slag) relative to a denitrifying system to maximize N and P removal and minimize pollution swapping under varying flow conditions (i.e., woodchip column hydraulic retention times (HRTs) of 7.2, 18, and 51 h; P-filter HRTs of 7.6-59 min). Woodchip denitrification columns were placed either upstream or downstream of P-filters filled with either medium. The configuration with woodchip denitrifying systems placed upstream of the P-filters generally provided optimized dissolved P removal efficiencies and removal rates. The P-filters placed upstream of the woodchip columns exhibited better P removal than downstream-placed P-filters only under overly long (i.e., N-limited) retention times when highly reduced effluent exited the woodchip bioreactors. The paired configurations using mine drainage residuals provided significantly greater P removal than the steel slag P-filters (e.g., 25-133 versus 8.8-48 g P removed m-3 filter media d-1, respectively), but there were no significant differences in N removal between treatments (removal rates: 8.0-18 g N removed m-3 woodchips d-1; N removal efficiencies: 18-95% across all HRTs). The range of HRTs tested here resulted in various undesirable pollution swapping by-products from the denitrifying bioreactors: nitrite production when nitrate removal was not complete and sulfate reduction, chemical oxygen demand production and decreased pH during overly long retention times. The downstream P-filter placement provided a polishing step for removal of chemical oxygen demand and nitrite.


Assuntos
Desnitrificação , Fósforo , Reatores Biológicos , Nitratos , Nitrogênio
18.
J Reconstr Microsurg ; 33(2): 92-96, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27733003

RESUMO

Background A key avoidable expense in the surgical setting is the wastage of disposable surgical items, which are discarded after cases even if they go unused. A major contributor to wastage of these items is the inaccuracy of surgeon preference cards, which are rarely examined or updated. The authors report the application of a novel technique called cost heatmapping to facilitate standardization of preference cards for microvascular breast reconstruction. Methods Preference card data were obtained for all surgeons performing microvascular breast reconstruction at the authors' institution. These data were visualized using the heatmap.2 function in the gplot package for R. The resulting cost heatmaps were shown to all surgeons performing microvascular breast reconstruction at our institution; each surgeon was asked to classify the items on the heatmap as "always needed," "sometimes needed," or "never needed." This feedback was used to generate a lean standardized preference card for all surgeons. This card was validated by all surgeons performing the case and by nursing leadership familiar with the supply needs of microvascular breast reconstruction before implementation. Cost savings associated with implementation were calculated. Results Implementation of the preference card changes will lead to an estimated per annum savings of $17,981.20 and a per annum reduction in individual items listed on preference cards of 1,693 items. Conclusion Cost heatmapping is a powerful tool for increasing surgeon awareness of cost and for facilitating comparison and standardization of surgeon preference cards.


Assuntos
Redução de Custos , Equipamentos Descartáveis/economia , Mamoplastia/economia , Mamoplastia/instrumentação , Instrumentos Cirúrgicos/economia , Atitude do Pessoal de Saúde , Análise Custo-Benefício , Equipamentos Descartáveis/estatística & dados numéricos , Feminino , Controle de Formulários e Registros , Humanos , Mamoplastia/normas , Segurança do Paciente
19.
Water Res ; 105: 147-156, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27614035

RESUMO

Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m3 of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P2O5) and along the bioreactor floor (0.04 vs. 0.12%P2O5) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device.


Assuntos
Reatores Biológicos/microbiologia , Águas Residuárias , Desnitrificação , Nitrogênio , Eliminação de Resíduos Líquidos , Purificação da Água/instrumentação
20.
J Environ Qual ; 45(3): 757-61, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27136139

RESUMO

Denitrifying bioreactors are organic carbon-filled excavations designed to enhance the natural process of denitrification for the simple, passive treatment of nitrate-nitrogen. Research on and installation of these bioreactors has accelerated within the past 10 years, particularly in watersheds concerned about high nonpoint-source nitrate loads and also for tertiary wastewater treatment. This special section, inspired by the meeting of the Managing Denitrification in Agronomic Systems Community at the 2014 Annual Meeting of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, aims to firmly establish that denitrifying bioreactors for treatment of nitrate in drainage waters, groundwater, and some wastewaters have moved beyond the proof of concept. This collection of 14 papers expands the peer-reviewed literature of denitrifying bioreactors into new locations, applications, and environmental conditions. There is momentum behind the pairing of wood-based bioreactors with other media (biochar, corn cobs) and in novel designs (e.g., use within treatment trains or use of baffles) to broaden applicability into new kinds of waters and pollutants and to improve performance under challenging field conditions such as cool early season agricultural drainage. Concerns about negative bioreactor by-products (nitrous oxide and hydrogen sulfide emissions, start-up nutrient flushing) are ongoing, but this translates into a significant research opportunity to develop more advanced designs and to fine tune management strategies. Future research must think more broadly to address bioreactor impacts on holistic watershed health and greenhouse gas balances and to facilitate collaborations that allow investigation of mechanisms within the bioreactor "black box."


Assuntos
Reatores Biológicos , Desnitrificação , Nitratos , Nitrogênio , Óxido Nitroso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...