Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 17(4): 756-765, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35364012

RESUMO

Doxorubicin is a commonly used chemotherapeutic drug, but its use is limited by doxorubicin-induced cardiotoxicity (DIC), which can lead to irreversible heart failure and death. A missense variant rs2229774 (p.S427L) in the retinoic acid receptor gamma (RARG) gene is associated with increased susceptibility to DIC, but the precise mechanism underlying this association is incompletely understood. We performed molecular dynamic simulations to determine the effect of this variant on RARG structure and then validated these predictions using CRISPR-Cas9-genome-edited, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We found that this variant leads to reduced activation of its target genes in response to doxorubicin, including gene pathways involved in DNA repair and consequently an inability to mediate DNA repair after exposure to doxorubicin. Our findings establish a role of RARG p.S427L in attenuating DNA repair in DIC and provide insight into the pathogenesis of this cardiotoxic effect.


Assuntos
Células-Tronco Pluripotentes Induzidas , Antibióticos Antineoplásicos/farmacologia , Cardiotoxicidade , Reparo do DNA , Doxorrubicina/farmacologia , Humanos , Miócitos Cardíacos/metabolismo
2.
Cell Death Dis ; 12(4): 339, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795647

RESUMO

Doxorubicin is a chemotherapeutic drug used for the treatment of various malignancies; however, patients can experience cardiotoxic effects and this has limited the use of this potent drug. The mechanisms by which doxorubicin kills cardiomyocytes has been elusive and despite extensive research the exact mechanisms remain unknown. This review focuses on recent advances in our understanding of doxorubicin induced regulated cardiomyocyte death pathways including autophagy, ferroptosis, necroptosis, pyroptosis and apoptosis. Understanding the mechanisms by which doxorubicin leads to cardiomyocyte death may help identify novel therapeutic agents and lead to more targeted approaches to cardiotoxicity testing.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cardiotoxicidade/metabolismo , Doxorrubicina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Humanos , Miócitos Cardíacos/metabolismo , Necroptose/efeitos dos fármacos
3.
Sci Rep ; 10(1): 10363, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587261

RESUMO

Doxorubicin is a potent anticancer drug used to treat a variety of cancer types. However, its use is limited by doxorubicin-induced cardiotoxicity (DIC). A missense variant in the RARG gene (S427L; rs2229774) has been implicated in susceptibility to DIC in a genome wide association study. The goal of this study was to investigate the functional role of this RARG variant in DIC. We used induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) from patients treated with doxorubicin. iPSC-CMs from individuals who experienced DIC (cases) showed significantly greater sensitivity to doxorubicin compared to iPSC-CMs from doxorubicin-treated individuals who did not develop DIC (controls) in cell viability and optical mapping experiments. Using CRISPR/Cas9, we generated isogenic cell lines that differed only at the RARG locus. Genetic correction of RARG-S427L to wild type resulted in reduced doxorubicin-induced double stranded DNA breaks, reactive oxygen species production, and cell death. Conversely, introduction of RARG-S427L increased susceptibility to doxorubicin. Finally, genetic disruption of the RARG gene resulted in protection from cell death due to doxorubicin treatment. Our findings suggest that the presence of RARG-S427L increases sensitivity to DIC, establishing a direct, causal role for this variant in DIC.


Assuntos
Cardiotoxicidade/patologia , Doxorrubicina/efeitos adversos , Células-Tronco Pluripotentes Induzidas/patologia , Mutação , Miócitos Cardíacos/patologia , Neoplasias/tratamento farmacológico , Receptores do Ácido Retinoico/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibióticos Antineoplásicos/efeitos adversos , Sistemas CRISPR-Cas , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Neoplasias/patologia , Receptores do Ácido Retinoico/antagonistas & inibidores , Receptores do Ácido Retinoico/metabolismo , Células Tumorais Cultivadas , Receptor gama de Ácido Retinoico
4.
Stem Cell Reports ; 12(5): 996-1006, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31031187

RESUMO

Ibrutinib (IB) is an oral Bruton's tyrosine kinase (BTK) inhibitor that has demonstrated benefit in B cell cancers, but is associated with a dramatic increase in atrial fibrillation (AF). We employed cell-specific differentiation protocols and optical mapping to investigate the effects of IB and other tyrosine kinase inhibitors (TKIs) on the voltage and calcium transients of atrial and ventricular human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). IB demonstrated direct cell-specific effects on atrial hPSC-CMs that would be predicted to predispose to AF. Second-generation BTK inhibitors did not have the same effect. Furthermore, IB exposure was associated with differential chamber-specific regulation of a number of regulatory pathways including the receptor tyrosine kinase pathway, which may be implicated in the pathogenesis of AF. Our study is the first to demonstrate cell-type-specific toxicity in hPSC-derived atrial and ventricular cardiomyocytes, which reliably reproduces the clinical cardiotoxicity observed.


Assuntos
Coração/efeitos dos fármacos , Miocárdio/citologia , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Adenina/análogos & derivados , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Cardiotoxicidade/diagnóstico , Cardiotoxicidade/fisiopatologia , Diferenciação Celular , Células Cultivadas , Coração/fisiopatologia , Átrios do Coração/citologia , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/fisiopatologia , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Humanos , Miócitos Cardíacos/citologia , Especificidade de Órgãos , Piperidinas , Células-Tronco Pluripotentes/citologia , Inibidores de Proteínas Quinases/farmacologia
5.
Drug Discov Today Technol ; 28: 13-21, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30205876

RESUMO

Cardiovascular diseases (CVDs) are leading causes of death worldwide, and drug-induced cardiotoxicity is among the most common cause of drug withdrawal from the market. Improved models of cardiac tissue are needed to study the mechanisms of CVDs and drug-induced cardiotoxicity. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) have provided a major advance to our ability to study these conditions. Combined with efficient genome editing technologies, such as CRISPR/Cas9, we now have the ability to study with greater resolution the genetic causes and underlying mechanisms of inherited and drug-induced cardiotoxicity, and to investigate new treatments. Here, we review recent advances in the use of hPSC-CMs and CRISPR/Cas9-mediated genome editing to study cardiotoxicity and model CVD.


Assuntos
Sistemas CRISPR-Cas , Cardiotoxicidade/genética , Doenças Cardiovasculares/genética , Edição de Genes , Células-Tronco/fisiologia , Animais , Cardiotoxicidade/terapia , Doenças Cardiovasculares/terapia , Diferenciação Celular/genética , Genoma Humano , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...