Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 13(1): 4727, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953489

RESUMO

Bergmann's and Allen's rules state that endotherms should be larger and have shorter appendages in cooler climates. However, the drivers of these rules are not clear. Both rules could be explained by adaptation for improved thermoregulation, including plastic responses to temperature in early life. Non-thermal explanations are also plausible as climate impacts other factors that influence size and shape, including starvation risk, predation risk, and foraging ecology. We assess the potential drivers of Bergmann's and Allen's rules in 30 shorebird species using extensive field data (>200,000 observations). We show birds in hot, tropical northern Australia have longer bills and smaller bodies than conspecifics in temperate, southern Australia, conforming with both ecogeographical rules. This pattern is consistent across ecologically diverse species, including migratory birds that spend early life in the Arctic. Our findings best support the hypothesis that thermoregulatory adaptation to warm climates drives latitudinal patterns in shorebird size and shape.


Assuntos
Aclimatação , Clima , Animais , Aves , Tamanho Corporal/fisiologia , Temperatura
3.
Mov Ecol ; 5: 23, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29142755

RESUMO

BACKGROUND: Migrants have been hypothesised to use different migration strategies between seasons: a time-minimization strategy during their pre-breeding migration towards the breeding grounds and an energy-minimization strategy during their post-breeding migration towards the wintering grounds. Besides season, we propose body size as a key factor in shaping migratory behaviour. Specifically, given that body size is expected to correlate negatively with maximum migration speed and that large birds tend to use more time to complete their annual life-history events (such as moult, breeding and migration), we hypothesise that large-sized species are time stressed all year round. Consequently, large birds are not only likely to adopt a time-minimization strategy during pre-breeding migration, but also during post-breeding migration, to guarantee a timely arrival at both the non-breeding (i.e. wintering) and breeding grounds. METHODS: We tested this idea using individual tracks across six long-distance migratory shorebird species (family Scolopacidae) along the East Asian-Australasian Flyway varying in size from 50 g to 750 g lean body mass. Migration performance was compared between pre- and post-breeding migration using four quantifiable migratory behaviours that serve to distinguish between a time- and energy-minimization strategy, including migration speed, number of staging sites, total migration distance and step length from one site to the next. RESULTS: During pre- and post-breeding migration, the shorebirds generally covered similar distances, but they tended to migrate faster, used fewer staging sites, and tended to use longer step lengths during pre-breeding migration. These seasonal differences are consistent with the prediction that a time-minimization strategy is used during pre-breeding migration, whereas an energy-minimization strategy is used during post-breeding migration. However, there was also a tendency for the seasonal difference in migration speed to progressively disappear with an increase in body size, supporting our hypothesis that larger species tend to use time-minimization strategies during both pre- and post-breeding migration. CONCLUSIONS: Our study highlights that body size plays an important role in shaping migratory behaviour. Larger migratory bird species are potentially time constrained during not only the pre- but also the post-breeding migration. Conservation of their habitats during both seasons may thus be crucial for averting further population declines.

4.
Mov Ecol ; 4: 12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27134752

RESUMO

BACKGROUND: Geolocators are useful for tracking movements of long-distance migrants, but potential negative effects on birds have not been well studied. We tested for effects of geolocators (0.8-2.0 g total, representing 0.1-3.9 % of mean body mass) on 16 species of migratory shorebirds, including five species with 2-4 subspecies each for a total of 23 study taxa. Study species spanned a range of body sizes (26-1091 g) and eight genera, and were tagged at 23 breeding and eight nonbreeding sites. We compared breeding performance and return rates of birds with geolocators to control groups while controlling for potential confounding variables. RESULTS: We detected negative effects of tags for three small-bodied species. Geolocators reduced annual return rates for two of 23 taxa: by 63 % for semipalmated sandpipers and by 43 % for the arcticola subspecies of dunlin. High resighting effort for geolocator birds could have masked additional negative effects. Geolocators were more likely to negatively affect return rates if the total mass of geolocators and color markers was 2.5-5.8 % of body mass than if tags were 0.3-2.3 % of body mass. Carrying a geolocator reduced nest success by 42 % for semipalmated sandpipers and tripled the probability of partial clutch failure in semipalmated and western sandpipers. Geolocators mounted perpendicular to the leg on a flag had stronger negative effects on nest success than geolocators mounted parallel to the leg on a band. However, parallel-band geolocators were more likely to reduce return rates and cause injuries to the leg. No effects of geolocators were found on breeding movements or changes in body mass. Among-site variation in geolocator effect size was high, suggesting that local factors were important. CONCLUSIONS: Negative effects of geolocators occurred only for three of the smallest species in our dataset, but were substantial when present. Future studies could mitigate impacts of tags by reducing protruding parts and minimizing use of additional markers. Investigators could maximize recovery of tags by strategically deploying geolocators on males, previously marked individuals, and successful breeders, though targeting subsets of a population could bias the resulting migratory movement data in some species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...