Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 104(6): e4047, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37261395

RESUMO

Tracking biodiversity shifts is central to understanding past, present, and future global changes. Recent advances in bioacoustics and the low cost of high-quality automatic recorders are revolutionizing studies in biogeography and community and behavioral ecology with a robust assessment of phenology, species occurrence, and individual activity. This large volume of acoustic recordings has recently generated a plethora of datasets that can now be handled automatically, mostly via big data methods such as deep learning. These approaches need high-quality annotations to classify and detect recorded sounds efficiently. However, very few strongly annotated datasets-that is, with detailed information on start and end time of each vocalization-are openly accessible to the public. Moreover, these datasets mostly cover temperate species and are usually limited to a single year of recordings. Here, we present ArcticBirdSounds, the first open-access, multisite, and multiyear strongly annotated dataset of arctic bird vocalizations. ArcticBirdSounds offers 20 h of annotated recordings over 2 years (2018, 2019), taken from 15 distinct plots within six locations across the Arctic, from Alaska to Greenland. Recordings cover the arctic vertebrates' breeding period and are evenly spaced during the day; they capture most species breeding there with 12,933 temporal annotations in 49 classes of sounds. While these data can be used for many pressing ecological questions, it is also a unique resource for methodological development to help meet the challenges of fast ecosystem transformations such as those happening in the Arctic. All data, including audio files, annotation files, and companion spreadsheets, are available in an Open Science Framework repository published under a CC BY 4.0 License.


Assuntos
Aves , Ecossistema , Animais , Regiões Árticas , Alaska , Biodiversidade
2.
PLoS One ; 10(11): e0141999, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26545245

RESUMO

Animal tracking through Argos satellite telemetry has enormous potential to test hypotheses in animal behavior, evolutionary ecology, or conservation biology. Yet the applicability of this technique cannot be fully assessed because no clear picture exists as to the conditions influencing the accuracy of Argos locations. Latitude, type of environment, and transmitter movement are among the main candidate factors affecting accuracy. A posteriori data filtering can remove "bad" locations, but again testing is still needed to refine filters. First, we evaluate experimentally the accuracy of Argos locations in a polar terrestrial environment (Nunavut, Canada), with both static and mobile transmitters transported by humans and coupled to GPS transmitters. We report static errors among the lowest published. However, the 68th error percentiles of mobile transmitters were 1.7 to 3.8 times greater than those of static transmitters. Second, we test how different filtering methods influence the quality of Argos location datasets. Accuracy of location datasets was best improved when filtering in locations of the best classes (LC3 and 2), while the Douglas Argos filter and a homemade speed filter yielded similar performance while retaining more locations. All filters effectively reduced the 68th error percentiles. Finally, we assess how location error impacted, at six spatial scales, two common estimators of home-range size (a proxy of animal space use behavior synthetizing movements), the minimum convex polygon and the fixed kernel estimator. Location error led to a sometimes dramatic overestimation of home-range size, especially at very local scales. We conclude that Argos telemetry is appropriate to study medium-size terrestrial animals in polar environments, but recommend that location errors are always measured and evaluated against research hypotheses, and that data are always filtered before analysis. How movement speed of transmitters affects location error needs additional research.


Assuntos
Comportamento de Retorno ao Território Vital , Telemetria/métodos , Animais , Regiões Árticas , Nunavut , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...