Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-487257

RESUMO

SARS-CoV-2 neutralizing antibodies play a critical role in prevention and treatment of COVID-19 but are challenged by viral evolution and antibody evasion, exemplified by the highly resistant Omicron BA.1 sublineage.1-12 Importantly, the recently identified Omicron sublineages BA.2.12.1 and BA.4/5 with differing spike mutations are rapidly emerging in various countries. By determining polyclonal serum activity of 50 convalescent or vaccinated individuals against BA.1, BA.1.1, BA.2, BA.2.12.1, and BA.4/5, we reveal a further reduction of BA.4/5 susceptibility to vaccinee sera. Most notably, delineation of the sensitivity to an extended panel of 163 antibodies demonstrates pronounced antigenic differences of individual sublineages with distinct escape patterns and increased antibody resistance of BA.4/5 compared to the most prevalent BA.2 sublineage. These results suggest that the antigenic distance from BA.1 and the increased resistance compared to BA.2 may favor immune escape-mediated expansion of BA.4/5 after the first Omicron wave. Finally, while most monoclonal antibodies in clinical stages are inactive against all Omicron sublineages, we identify promising novel antibodies with high pan-Omicron neutralizing potency. Our study provides a detailed understanding of the antibody escape from the most recently emerging Omicron sublineages that can inform on effective strategies to prevent and treat COVID-19.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-459398

RESUMO

Pre-existing immunity against SARS-CoV-2 may have critical implications for our understanding of COVID-19 susceptibility and severity. Various studies recently provided evidence of pre-existing T cell immunity against SARS-CoV-2 in unexposed individuals. In contrast, the presence and clinical relevance of a pre-existing B cell immunity remains to be fully elucidated. Here, we provide a detailed analysis of the B cell response to SARS-CoV-2 in unexposed individuals. To this end, we extensively investigated the memory B cell response to SARS-CoV-2 in 150 adults sampled pre-pandemically. Comprehensive screening of donor plasma and purified IgG samples for binding and neutralization in various functional assays revealed no substantial activity against SARS-CoV-2 but broad reactivity to endemic betacoronaviruses. Moreover, we analyzed antibody sequences of 8,174 putatively SARS-CoV-2-reactive B cells on a single cell level and generated and tested 158 monoclonal antibodies. None of the isolated antibodies displayed relevant binding or neutralizing activity against SARS-CoV-2. Taken together, our results show no evidence of relevant pre-existing antibody and B cell immunity against SARS-CoV-2 in unexposed adults.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-447662

RESUMO

Despite recent availability of vaccines against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), there is an urgent need for specific anti-SARS-CoV-2 drugs. Monoclonal neutralizing antibodies are an important drug class in the global fight against the SARS-CoV-2 pandemic due to their ability to convey immediate protection and their potential to be used as both, prophylactic and therapeutic drugs. Clinically used neutralizing antibodies against respiratory viruses are currently injected intravenously, which can lead to suboptimal pulmonary bioavailability and thus to a lower effectiveness. Here we describe DZIF-10c, a fully human monoclonal neutralizing antibody that binds the receptor-binding domain of SARS-CoV-2 spike protein. DZIF-10c displays an exceptionally high neutralizing potency against SARS-CoV-2 and retains activity against the variants of concern B.1.1.7 and B.1.351. Importantly, not only systemic but also intranasal application of DZIF-10c abolished presence of infectious particles in the lungs of SARS-CoV-2 infected mice and mitigated lung pathology. Along with a favorable pharmacokinetic profile, these results highlight DZIF-10c as a novel human SARS-CoV-2 neutralizing antibody with high in vitro and in vivo antiviral potency. The successful intranasal application of DZIF-10c paves the way for clinical trials investigating topical delivery of anti-SARS-CoV-2 antibodies. Significance StatementMonoclonal neutralizing antibodies are important in the global fight against the SARS-CoV-2 pandemic due to their ability to convey immediate protection. However, their intravenous application might lead to suboptimal bioavailability in the lung. We here precisely characterize a new monoclonal neutralizing antibody (DZIF-10c) that binds to the receptor binding domain of the spike protein of SARS-CoV-2. DZIF-10c neutralizes SARS-CoV-2 with exceptionally high potency and maintains activity against circulating variants of concern. The antibody has a favorable pharmacokinetic profile and protects mice from SARS-CoV-2 infection. Importantly, we show that intranasal administration of DZIF-10c generates protective efficacy. These results not only identify DZIF-10c as a novel highly potent neutralizing antibody, but further pave the way for a topical application of anti-SARS-CoV-2 antibodies.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-146290

RESUMO

The SARS-CoV-2 pandemic has unprecedented implications for public health, social life, and world economy. Since approved drugs and vaccines are not available, new options for COVID-19 treatment and prevention are highly demanded. To identify SARS-CoV-2 neutralizing antibodies, we analysed the antibody response of 12 COVID-19 patients from 8 to 69 days post diagnosis. By screening 4,313 SARS-CoV-2-reactive B cells, we isolated 255 antibodies from different time points as early as 8 days post diagnosis. Among these, 28 potently neutralized authentic SARS-CoV-2 (IC100 as low as 0.04 g/ml), showing a broad spectrum of V genes and low levels of somatic mutations. Interestingly, potential precursors were identified in naive B cell repertoires from 48 healthy individuals that were sampled before the COVID-19 pandemic. Our results demonstrate that SARS-CoV-2 neutralizing antibodies are readily generated from a diverse pool of precursors, fostering the hope of rapid induction of a protective immune response upon vaccination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...