Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(4): e0042724, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501871

RESUMO

Apicomplexa parasites cause major diseases such as toxoplasmosis and malaria that have major health and economic burdens. These unicellular pathogens are obligate intracellular parasites that heavily depend on lipid metabolism for the survival within their hosts. Their lipid synthesis relies on an essential combination of fatty acids (FAs) obtained from both de novo synthesis and scavenging from the host. The constant flux of scavenged FA needs to be channeled toward parasite lipid storage, and these FA storages are timely mobilized during parasite division. In eukaryotes, the utilization of FA relies on their obligate metabolic activation mediated by acyl-co-enzyme A (CoA) synthases (ACSs), which catalyze the thioesterification of FA to a CoA. Besides the essential functions of FA for parasite survival, the presence and roles of ACS are yet to be determined in Apicomplexa. Here, we identified TgACS1 as a Toxoplasma gondii cytosolic ACS that is involved in FA mobilization in the parasite specifically during low host nutrient conditions, especially in extracellular stages where it adopts a different localization. Heterologous complementation of yeast ACS mutants confirmed TgACS1 as being an Acyl-CoA synthetase of the bubble gum family that is most likely involved in ß-oxidation processes. We further demonstrate that TgACS1 is critical for gliding motility of extracellular parasite facing low nutrient conditions, by relocating to peroxisomal-like area.IMPORTANCEToxoplasma gondii, causing human toxoplasmosis, is an Apicomplexa parasite and model within this phylum that hosts major infectious agents, such as Plasmodium spp., responsible for malaria. The diseases caused by apicomplexans are responsible for major social and economic burdens affecting hundreds of millions of people, like toxoplasmosis chronically present in about one-third of the world's population. Lack of efficient vaccines, rapid emergence of resistance to existing treatments, and toxic side effects of current treatments all argue for the urgent need to develop new therapeutic tools to combat these diseases. Understanding the key metabolic pathways sustaining host-intracellular parasite interactions is pivotal to develop new efficient ways to kill these parasites. Current consensus supports parasite lipid synthesis and trafficking as pertinent target for novel treatments. Many processes of this essential lipid metabolism in the parasite are not fully understood. The capacity for the parasites to sense and metabolically adapt to the host physiological conditions has only recently been unraveled. Our results clearly indicate the role of acyl-co-enzyme A (CoA) synthetases for the essential metabolic activation of fatty acid (FA) used to maintain parasite propagation and survival. The significance of our research is (i) the identification of seven of these enzymes that localize at different cellular areas in T. gondii parasites; (ii) using lipidomic approaches, we show that TgACS1 mobilizes FA under low host nutrient content; (iii) yeast complementation showed that acyl-CoA synthase 1 (ACS1) is an ACS that is likely involved in peroxisomal ß-oxidation; (iv) the importance of the peroxisomal targeting sequence for correct localization of TgACS1 to a peroxisomal-like compartment in extracellular parasites; and lastly, (v) that TgACS1 has a crucial role in energy production and extracellular parasite motility.


Assuntos
Malária , Toxoplasma , Toxoplasmose , Humanos , Toxoplasma/metabolismo , Metabolismo dos Lipídeos , Saccharomyces cerevisiae/metabolismo , Toxoplasmose/parasitologia , Ácidos Graxos/metabolismo , Nutrientes , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
2.
Cell Rep ; 42(4): 112251, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37015228

RESUMO

Phospholipid metabolism is crucial for membrane biogenesis and homeostasis of Plasmodium falciparum. To generate such phospholipids, the parasite extensively scavenges, recycles, and reassembles host lipids. P. falciparum possesses an unusually large number of lysophospholipases, whose roles and importance remain to be elucidated. Here, we functionally characterize one P. falciparum lysophospholipase, PfLPL3, to reveal its key role in parasite propagation during asexual blood stages. PfLPL3 displays a dynamic localization throughout asexual stages, mainly localizing in the host-parasite interface. Inducible knockdown of PfLPL3 disrupts parasite development from trophozoites to schizont, inducing a drastic reduction in merozoite progenies. Detailed lipidomic analyses show that PfLPL3 generates fatty acids from scavenged host lipids to generate neutral lipids. These are then timely mobilized to allow schizogony and merozoite formation. We then identify inhibitors of PfLPL3 from Medicine for Malaria Venture (MMV) with potent antimalarial activity, which could also serve as pertinent chemical tools to study parasite lipid synthesis.


Assuntos
Malária Falciparum , Parasitos , Animais , Plasmodium falciparum , Parasitos/metabolismo , Ácidos Graxos/metabolismo , Lisofosfolipase/metabolismo , Malária Falciparum/parasitologia , Eritrócitos/parasitologia , Proteínas de Protozoários/metabolismo
3.
PLoS Pathog ; 18(3): e1010313, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35298557

RESUMO

Apicomplexa are obligate intracellular parasites responsible for major human infectious diseases such as toxoplasmosis and malaria, which pose social and economic burdens around the world. To survive and propagate, these parasites need to acquire a significant number of essential biomolecules from their hosts. Among these biomolecules, lipids are a key metabolite required for parasite membrane biogenesis, signaling events, and energy storage. Parasites can either scavenge lipids from their host or synthesize them de novo in a relict plastid, the apicoplast. During their complex life cycle (sexual/asexual/dormant), Apicomplexa infect a large variety of cells and their metabolic flexibility allows them to adapt to different host environments such as low/high fat content or low/high sugar levels. In this review, we discuss the role of lipids in Apicomplexa parasites and summarize recent findings on the metabolic mechanisms in host nutrient adaptation.


Assuntos
Apicomplexa , Apicoplastos , Parasitos , Animais , Apicomplexa/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipídeos
4.
Life Sci Alliance ; 5(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34857648

RESUMO

Artemisinin-based combination therapies (ACT) are the frontline treatments against malaria worldwide. Recently the use of traditional infusions from Artemisia annua (from which artemisinin is obtained) or Artemisia afra (lacking artemisinin) has been controversially advocated. Such unregulated plant-based remedies are strongly discouraged as they might constitute sub-optimal therapies and promote drug resistance. Here, we conducted the first comparative study of the anti-malarial effects of both plant infusions in vitro against the asexual erythrocytic stages of Plasmodium falciparum and the pre-erythrocytic (i.e., liver) stages of various Plasmodium species. Low concentrations of either infusion accounted for significant inhibitory activities across every parasite species and stage studied. We show that these antiplasmodial effects were essentially artemisinin-independent and were additionally monitored by observations of the parasite apicoplast and mitochondrion. In particular, the infusions significantly incapacitated sporozoites, and for Plasmodium vivax and P. cynomolgi, disrupted the hypnozoites. This provides the first indication that compounds other than 8-aminoquinolines could be effective antimalarials against relapsing parasites. These observations advocate for further screening to uncover urgently needed novel antimalarial lead compounds.


Assuntos
Antimaláricos/farmacologia , Artemisia/química , Artemisininas/farmacologia , Extratos Vegetais/farmacologia , Plasmodium/efeitos dos fármacos , Antimaláricos/química , Artemisininas/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/parasitologia , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/parasitologia , Testes de Sensibilidade Parasitária , Extratos Vegetais/química , Plasmodium/crescimento & desenvolvimento
5.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34451821

RESUMO

The malaria parasite harbors a relict plastid called the apicoplast. Although not photosynthetic, the apicoplast retains unusual, non-mammalian metabolic pathways that are essential to the parasite, opening up a new perspective for the development of novel antimalarials which display a new mechanism of action. Based on the previous antiplasmodial hit-molecules identified in the 2-trichloromethylquinoxaline series, we report herein a structure-activity relationship (SAR) study at position two of the quinoxaline ring by synthesizing 20 new compounds. The biological evaluation highlighted a hit compound (3i) with a potent PfK1 EC50 value of 0.2 µM and a HepG2 CC50 value of 32 µM (Selectivity index = 160). Nitro-containing (3i) was not genotoxic, both in the Ames test and in vitro comet assay. Activity cliffs were observed when the 2-CCl3 group was replaced, showing that it played a key role in the antiplasmodial activity. Investigation of the mechanism of action showed that 3i presents a drug response by targeting the apicoplast and a quick-killing mechanism acting on another target site.

6.
Eur J Med Chem ; 224: 113722, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364164

RESUMO

The identification of a plant-like Achille's Heel relict, i.e. the apicoplast, that is essential for Plasmodium spp., the causative agent of malaria lead to an attractive drug target for new antimalarials with original mechanism of action. Although it is not photosynthetic, the apicoplast retains several anabolic pathways that are indispensable for the parasite. Based on previously identified antiplasmodial hit-molecules belonging to the 2-trichloromethylquinazoline and 3-trichloromethylquinoxaline series, we report herein an antiplasmodial Structure-Activity Relationships (SAR) study at position two of the quinoxaline ring of 16 newly synthesized compounds. Evaluation of their activity toward the multi-resistant K1 Plasmodium falciparum strain and cytotoxicity on the human hepatocyte HepG2 cell line revealed a hit compound (3k) with a PfK1 EC50 value of 0.3 µM and a HepG2 CC50 value of 56.0 µM (selectivity index = 175). Moreover, hit-compound 3k was not cytotoxic on VERO or CHO cell lines and was not genotoxic in the in vitro comet assay. Activity cliffs were observed when the trichloromethyl group was replaced by CH3, CF3 or H, showing that this group played a key role in the antiplasmodial activity. Biological investigations performed to determine the target and mechanism of action of the compound 3k strongly suggest that the apicoplast is the putative target as showed by severe alteration of apicoplaste biogenesis and delayed death response. Considering that there are very few molecules that affect the Plasmodium apicoplast, our work provides, for the first time, evidence of the biological target of trichloromethylated derivatives.


Assuntos
Apicoplastos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinoxalinas/uso terapêutico , Humanos , Quinoxalinas/farmacologia , Relação Estrutura-Atividade
7.
Nat Commun ; 12(1): 2813, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001876

RESUMO

Apicomplexa are obligate intracellular parasites responsible for major human diseases. Their intracellular survival relies on intense lipid synthesis, which fuels membrane biogenesis. Parasite lipids are generated as an essential combination of fatty acids scavenged from the host and de novo synthesized within the parasite apicoplast. The molecular and metabolic mechanisms allowing regulation and channeling of these fatty acid fluxes for intracellular parasite survival are currently unknown. Here, we identify an essential phosphatidic acid phosphatase in Toxoplasma gondii, TgLIPIN, as the central metabolic nexus responsible for controlled lipid synthesis sustaining parasite development. Lipidomics reveal that TgLIPIN controls the synthesis of diacylglycerol and levels of phosphatidic acid that regulates the fine balance of lipids between storage and membrane biogenesis. Using fluxomic approaches, we uncover the first parasite host-scavenged lipidome and show that TgLIPIN prevents parasite death by 'lipotoxicity' through effective channeling of host-scavenged fatty acids to storage triacylglycerols and membrane phospholipids.


Assuntos
Membrana Celular/metabolismo , Lipidômica/métodos , Fosfatidato Fosfatase/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Prepúcio do Pênis/citologia , Técnicas de Silenciamento de Genes , Homeostase/genética , Interações Hospedeiro-Parasita , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Fosfatidato Fosfatase/genética , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/ultraestrutura
8.
Cell Rep ; 30(11): 3778-3792.e9, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187549

RESUMO

Apicomplexan parasites are unicellular eukaryotic pathogens that must obtain and combine lipids from both host cell scavenging and de novo synthesis to maintain parasite propagation and survival within their human host. Major questions on the role and regulation of each lipid source upon fluctuating host nutritional conditions remain unanswered. Characterization of an apicoplast acyltransferase, TgATS2, shows that the apicoplast provides (lyso)phosphatidic acid, required for the recruitment of a critical dynamin (TgDrpC) during parasite cytokinesis. Disruption of TgATS2 also leads parasites to shift metabolic lipid acquisition from de novo synthesis toward host scavenging. We show that both lipid scavenging and de novo synthesis pathways in wild-type parasites exhibit major metabolic and cellular plasticity upon sensing host lipid-deprived environments through concomitant (1) upregulation of de novo fatty acid synthesis capacities in the apicoplast and (2) parasite-driven host remodeling to generate multi-membrane-bound structures from host organelles that are imported toward the parasite.


Assuntos
Adaptação Fisiológica , Apicoplastos/metabolismo , Divisão Celular , Interações Hospedeiro-Parasita , Metabolismo dos Lipídeos , Parasitos/metabolismo , Toxoplasma/metabolismo , Toxoplasma/fisiologia , Aciltransferases/metabolismo , Animais , Membrana Celular/metabolismo , Citocinese , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/biossíntese , Deleção de Genes , Humanos , Espaço Intracelular/parasitologia , Estágios do Ciclo de Vida , Lipidômica , Masculino , Modelos Biológicos , Corpos Multivesiculares/metabolismo , Corpos Multivesiculares/ultraestrutura , Mutação/genética , Nutrientes , Parasitos/crescimento & desenvolvimento , Parasitos/fisiologia , Parasitos/ultraestrutura , Proteínas de Protozoários/metabolismo , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/ultraestrutura
9.
Life (Basel) ; 8(4)2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30373229

RESUMO

2-oxoglutarate (α-ketoglutarate; 2-OG) is an intermediate of the Krebs cycle, and constitutes the carbon skeleton for nitrogen assimilation and the synthesis of a variety of compounds. In addition to being an important metabolite, 2-OG is a signaling molecule with a broad regulatory repertoire in a variety of organisms, including plants, animals, and bacteria. Although challenging, measuring the levels and variations of metabolic signals in vivo is critical to better understand how cells control specific processes. To measure cellular 2-OG concentrations and dynamics, we designed a set of biosensors based on the fluorescence resonance energy transfer (FRET) technology that can be used in vivo in different organisms. For this purpose, we took advantage of the conformational changes of two cyanobacterial proteins induced by 2-OG binding. We show that these biosensors responded immediately and specifically to different 2-OG levels, and hence allowed to measure 2-OG variations in function of environmental modifications in the proteobacterium Escherichia coli and in the cyanobacterium Anabaena sp. PCC 7120. Our results pave the way to study 2-OG dynamics at the cellular level in uni- and multi-cellular organisms.

10.
Appl Microbiol Biotechnol ; 102(13): 5775-5783, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29691627

RESUMO

The conversion of solar energy into hydrogen represents a highly attractive strategy for the production of renewable energies. Photosynthetic microorganisms have the ability to produce H2 from sunlight but several obstacles must be overcome before obtaining a sustainable and efficient H2 production system. Cyanobacteria harbor [NiFe] hydrogenases required for the consumption of H2. As a result, their H2 production rates are low, which makes them not suitable for a high yield production. On the other hand, [FeFe] enzymes originating from anaerobic organisms such as Clostridium exhibit much higher H2 production activities, but their sensitivity to O2 inhibition impairs their use in photosynthetic organisms. To reach such a goal, it is therefore important to protect the hydrogenase from O2. The diazotrophic filamentous cyanobacteria protect their nitrogenases from O2 by differentiating micro-oxic cells called heterocysts. Producing [FeFe] hydrogenase in the heterocyst is an attractive strategy to take advantage of their potential in a photosynthetic microorganism. Here, we present a biological engineering approach for producing an active [FeFe] hydrogenase (HydA) from Clostridium acetobutylicum in the heterocysts of the filamentous cyanobacterium Nostoc PCC7120. To further decrease the O2 amount inside the heterocyst, the GlbN cyanoglobin from Nostoc commune was coproduced with HydA in the heterocyst. The engineered strain produced 400 µmol-H2 per mg Chlorophyll a, which represents 20-fold the amount produced by the wild type strain. This result is a clear demonstration that it is possible to associate oxygenic photosynthesis with H2 production by an O2-sensitive hydrogenase.


Assuntos
Clostridium acetobutylicum/enzimologia , Hidrogênio/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Microbiologia Industrial/métodos , Nostoc/genética , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo
11.
Case Rep Hematol ; 2013: 849168, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24307958

RESUMO

Low molecular weight heparins (LMWH) are commonly used in the ICU setting for thromboprophylaxis as well as curative decoagulation as required during renal replacement therapy (RRT). A rare adverse event revealing immunoallergic LMWH induced thrombopenia (HIT) is skin necrosis at injection sites. We report the case of a patient presenting with skin necrosis witnessing an HIT after RRT, without thrombocytopenia. The mechanism remains unclear. Anti-PF4/heparin antibodies, functional tests (HIPA and/or SRA), and skin biopsy are of great help to evaluate differential diagnosis with a low pretest probability 4T's score.

12.
Crit Care ; 15(5): R214, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21923899

RESUMO

INTRODUCTION: Adequate volume expansion (VE) in patients with evidence of hypoperfusion should be aimed not only at achieving an increase in stroke volume (SV) and cardiac index (CI) but also at improved tissue perfusion and oxygenation. Our aim in this study was to assess the dynamic changes in muscle tissue oxygen saturation (StO2) during hypovolaemia and in response to VE. METHODS: We conducted a prospective study of 42 fluid challenges in patients undergoing major abdominal surgery with evidence of hypovolaemia, defined as pulse pressure variation (PPV) >13% and SV variation (SVV) >12%. CI, SV, SVV (FloTrac/Vigileo) and PPV were measured before and after VE. Fluid responsiveness was defined as an increase of SV >15% after a 500-mL colloid infusion over 15 minutes. In all patients, the muscle StO2 and its changes during a standardised vascular occlusion test were analysed using a near-infrared spectroscopy device after anaesthesia induction (which defined the baseline state) and before and after each VE. RESULTS: No patients were preload-responsive after anaesthesia induction. Twenty-nine of forty-two fluid challenges (69%) were positive for VE, with a statistically significant (P < 0.001) difference in SV changes between positive and negative responses to VE. There was a statistically significant difference in PPV and SVV values before VE in the positive and negative fluid responses [PPV: 16% (15% to 18%) vs. 14% (13% to 15%), P = 0.001; and SVV: 14% (13% to 16%) vs. 16% (15% to 16%), P = 0.03 or positive and negative fluid responses, respectively]. Data are presented as medians and 25th and 75th percentiles Before VE there was no significant difference in StO2 values relative to baseline [86% (78% to 88%) vs. 84% (77% to 91%), P = 0.83], without a significant difference (P = 0.36) between positive and negative fluid challenges. Hypovolaemia was associated with a significant reduction (P = 0.004) in StO2 recovery slope, with a significant difference (P = 0.02) between positive and negative fluid challenges. The VE-induced increase in the StO2 recovery slope was 62 ± 49% (P < 0.001) for positive fluid challenges and 26 ± 34% (P = 0.04) for negative fluid challenges. CONCLUSIONS: Hypovolaemia significantly affects the muscle StO2 recovery slope. Restoring effective intravascular volume with fluid loading significantly improves the StO2 recovery slope, despite apparently ineffective changes in systemic haemodynamics.


Assuntos
Hidratação , Microcirculação , Músculo Esquelético/irrigação sanguínea , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Estudos Prospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...