Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 111(1): e16269, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38126922

RESUMO

PREMISE: The timing and pattern of a plant's flowering can have important consequences for reproductive success. Variation in flowering phenology may influence the number of prospective mates, the risk of mating with lower quality individuals, and the likelihood of self-pollination. Here we use a common garden experiment to explore within- and among-population variation in phenology. Our work provides new insights into how flowering phenology shapes mating opportunity and flowering synchrony in a self-compatible perennial. METHODS: To quantify variation in flowering phenology we raised progeny from nine populations of Mimulus ringens in a common garden. For each individual, we measured phenological traits including age at flowering onset, daily floral display size, total flower number, and flowering synchrony with other members of the population, and related these traits to mating opportunity. We also tested how individual flowering schedules influence the magnitude of synchrony. RESULTS: Flowering phenology and synchrony varied substantially within and among populations. From day to day, plants often oscillated between large and small daily floral displays. Additionally, flowering schedules of individual plants strongly influenced flowering synchrony and, along with the number of flowering days, markedly affected plants' mating opportunity. CONCLUSIONS: Phenological traits such as flowering synchrony can affect the quantity of mating opportunities and may be important targets of natural selection. Our results highlight the need for studies that quantify flowering patterns of individuals as well as populations.


Assuntos
Polinização , Reprodução , Humanos , Seleção Genética , Flores , Fenótipo
2.
Curr Biol ; 31(14): R893-R895, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34314713

RESUMO

Floral sexual polymorphisms have evolved repeatedly in angiosperms and are thought to reduce self-pollination and increase pollen export. Using a powerful pollen-labeling technique, quantum dots, a new study shows that pollen placement on pollinator bodies plays a critical role in disassortative pollination.


Assuntos
Magnoliopsida , Polinização , Flores , Magnoliopsida/genética , Pólen
3.
J Evol Biol ; 34(5): 803-815, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33704852

RESUMO

Variation in selfing rates within and among populations of hermaphroditic flowering plants can strongly influence the evolution of reproductive strategies and the genetic structure of populations. This intraspecific variation in mating patterns may reflect both genetic and ecological factors, but the relative importance of these factors remains poorly understood. Here, we explore how selfing in 13 natural populations of the perennial wildflower Mimulus ringens is influenced by (a) pollinator visitation, an ecological factor, and (b) floral display, a trait with a genetic component that also responds to environmental variation. We also explore whether genetically based floral traits, including herkogamy, affect selfing. We found substantial variation among populations in selfing rate (0.13-0.55). Selfing increased strongly and significantly with floral display, among as well as within populations. Selfing also increased at sites with lower pollinator visitation and low plant density. However, selfing was not correlated with floral morphology. Overall, these results suggest that pollinator visitation and floral display, two factors that interact to affect geitonogamous pollinator movements, can influence the selfing rate. This study identifies mechanisms that may play a role in maintaining selfing rate variation among populations.


Assuntos
Flores/fisiologia , Mimulus/fisiologia , Polinização , Autofertilização , Animais , Abelhas
4.
AoB Plants ; 12(4): plaa033, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32742630

RESUMO

Researchers have long assumed that plant spatial location influences plant reproductive success and pollinator foraging behaviour. For example, many flowering plant populations have small, linear or irregular shapes that increase the proportion of plants on the edge, which may reduce mating opportunities through both male and female function. Additionally, plants that rely on pollinators may be particularly vulnerable to edge effects if those pollinators exhibit restricted foraging and pollen carryover is limited. To explore the effects of spatial location (edge vs. interior) on siring success, seed production, pollinator foraging patterns and pollen-mediated gene dispersal, we established a square experimental array of 49 Mimulus ringens (monkeyflower) plants. We observed foraging patterns of pollinating bumblebees and used paternity analysis to quantify male and female reproductive success and mate diversity for plants on the edge versus interior. We found no significant differences between edge and interior plants in the number of seeds sired, mothered or the number of sires per fruit. However, we found strong differences in pollinator behaviour based on plant location, including 15 % lower per flower visitation rates and substantially longer interplant moves for edge plants. This translated into 40 % greater pollen-mediated gene dispersal for edge than for interior plants. Overall, our results suggest that edge effects are not as strong as is commonly assumed, and that different plant reproduction parameters respond to spatial location independently.

5.
Ann Bot ; 125(1): 1-9, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31586397

RESUMO

BACKGROUND: Siring success plays a key role in plant evolution and reproductive ecology, and variation among individuals creates an opportunity for selection to act. Differences in male reproductive success can be caused by processes that occur during two stages, the pollination and post-pollination phases of reproduction. In the pollination phase, heritable variation in floral traits and floral display affect pollinator visitation patterns, which in turn affect variation among plants in the amount of pollen exported and deposited on recipient stigmas. In the post-pollination phase, differences among individuals in pollen grain germination success and pollen tube growth may cause realized paternity to differ from patterns of pollen receipt. The maternal plant can also preferentially provision some developing seeds or fruits to further alter variation in siring success. SCOPE: In this review, we describe studies that advance our understanding of the dynamics of the pollination and post-pollination phases, focusing on how variation in male fitness changes in response to pollen limitation. We then explore the interplay between pollination and post-pollination success, and how these processes respond to ecological factors such as pollination intensity. We also identify pressing questions at the intersection of pollination and paternity and describe novel experimental approaches to elucidate the relative importance of pollination and post-pollination factors in determining male reproductive success. CONCLUSIONS: The relative contribution of pollination and post-pollination processes to variation in male reproductive success may not be constant, but rather may vary with pollination intensity. Studies that quantify the effects of pollination and post-pollination phases in concert will be especially valuable as they will enable researchers to more fully understand the ecological conditions influencing male reproductive success.


Assuntos
Magnoliopsida , Polinização , Flores , Paternidade , Pólen , Reprodução
6.
Am J Bot ; 106(8): 1131-1136, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31403705

RESUMO

PREMISE: Genetically diverse sibships are thought to increase parental fitness through a reduction in the intensity of sib competition, and through increased opportunities for seedling establishment in spatially or temporally heterogeneous environments. Nearly all research on mate diversity in flowering plants has focused on the number of fathers siring seeds within a fruit or on a maternal plant. Yet as hermaphrodites, plants can also accrue mate diversity by siring offspring on several pollen recipients in a population. Here we explore whether mate composition overlaps between the dual sex functions, and discuss the implications for plant reproductive success. METHODS: We established an experimental population of 49 Mimulus ringens (monkeyflower) plants, each trimmed to a single flower. Following pollination by wild bees, we quantified mate composition for each flower through both paternal and maternal function. Parentage was successfully assigned to 240 progeny, 98% of the sampled seeds. RESULTS: Comparison of mate composition between male and female function revealed high mate diversity, with almost no outcross mates shared between the two sexual functions of the same flower. CONCLUSIONS: Dual sex roles contribute to a near doubling of mate diversity in our experimental population of Mimulus ringens. This finding may help explain the maintenance of hermaphroditism under conditions that would otherwise favor the evolution of separate sexes.


Assuntos
Transtornos do Desenvolvimento Sexual , Magnoliopsida , Mimulus , Animais , Abelhas , Masculino , Polinização , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...